首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
P is the class of pseudocompact Hausdorff topological groups, and P is the class of groups which admit a topology T such that (G,T)∈P. It is known that every G=(G,T)∈P is totally bounded, so for GP the supremum T(G) of all pseudocompact group topologies on G and the supremum T#(G) of all totally bounded group topologies on G satisfy TT#.The authors conjecture for abelian GP that T=T#. That equality is established here for abelian GP with any of these (overlapping) properties. (a) G is a torsion group; (b) |G|?c2; (c) r0(G)=|G|=ω|G|; (d) |G| is a strong limit cardinal, and r0(G)=|G|; (e) some topology T with (G,T)∈P satisfies w(G,T)?c; (f) some pseudocompact group topology on G is metrizable; (g) G admits a compact group topology, and r0(G)=|G|. Furthermore, the product of finitely many abelian GP, each with the property T(G)=T#(G), has the same property.  相似文献   

2.
Let G be a graph. A G-trade of volume m is a pair (T,T), where each of T and T consists of m graphs, pairwise edge-disjoint, isomorphic to G, such that TT=∅ and the union of the edge sets of the graphs in T is identical to the union of the edge sets of the graphs in T. Let X(G) be the set of non-negative integers m such that no G-trade of volume m exists. In this paper we prove that, for GG holds asymptotically almost surely, where c=log(4/3)/88.  相似文献   

3.
Let p be a prime number and let G be a finitely generated group that is residually a finite p-group. We prove that if G satisfies a positive law on all elements of the form [a,b][c,d]i, a,b,c,dG and i?0, then the entire derived subgroup G satisfies a positive law. In fact, G is an extension of a nilpotent group by a locally finite group of finite exponent.  相似文献   

4.
The restricted connectivity κ(G) of a connected graph G is defined as the minimum cardinality of a vertex-cut over all vertex-cuts X such that no vertex u has all its neighbors in X; the superconnectivity κ1(G) is defined similarly, this time considering only vertices u in G-X, hence κ1(G)?κ(G). The minimum edge-degree of G is ξ(G)=min{d(u)+d(v)-2:uvE(G)}, d(u) standing for the degree of a vertex u. In this paper, several sufficient conditions yielding κ1(G)?ξ(G) are given, improving a previous related result by Fiol et al. [Short paths and connectivity in graphs and digraphs, Ars Combin. 29B (1990) 17-31] and guaranteeing κ1(G)=κ(G)=ξ(G) under some additional constraints.  相似文献   

5.
A graph G is dot-critical if contracting any edge decreases the domination number. Nader Jafari Rad (2009) [3] posed the problem: Is it true that a connected k-dot-critical graph G with G=0? is 2-connected? In this note, we give a family of 1-connected 2k-dot-critical graph with G=0? and show that this problem has a negative answer.  相似文献   

6.
The pair length of a graph G is the maximum positive integer k, such that the vertex set of G can be partitioned into disjoint pairs {x,x}, such that d(x,x)?k for every xV(G) and xy is an edge of G whenever xy is an edge. Chen asked whether the pair length of the cartesian product of two graphs is equal to the sum of their pair lengths. Our aim in this short note is to prove this result.  相似文献   

7.
The Hadwiger number η(G) of a graph G is the largest integer h such that the complete graph on h nodes Kh is a minor of G. Equivalently, η(G) is the largest integer such that any graph on at most η(G) nodes is a minor of G. The Hadwiger's conjecture states that for any graph G, η(G)?χ(G), where χ(G) is the chromatic number of G. It is well-known that for any connected undirected graph G, there exists a unique prime factorization with respect to Cartesian graph products. If the unique prime factorization of G is given as G1G2□?□Gk, where each Gi is prime, then we say that the product dimension of G is k. Such a factorization can be computed efficiently.In this paper, we study the Hadwiger's conjecture for graphs in terms of their prime factorization. We show that the Hadwiger's conjecture is true for a graph G if the product dimension of G is at least . In fact, it is enough for G to have a connected graph M as a minor whose product dimension is at least , for G to satisfy the Hadwiger's conjecture. We show also that if a graph G is isomorphic to Fd for some F, then η(G)?χ(G)⌊(d-1)/2⌋, and thus G satisfies the Hadwiger's conjecture when d?3. For sufficiently large d, our lower bound is exponentially higher than what is implied by the Hadwiger's conjecture.Our approach also yields (almost) sharp lower bounds for the Hadwiger number of well-known graph products like d-dimensional hypercubes, Hamming graphs and the d-dimensional grids. In particular, we show that for the d-dimensional hypercube Hd, . We also derive similar bounds for Gd for almost all G with n nodes and at least edges.  相似文献   

8.
The eccentric distance sum (EDS) is a novel topological index that offers a vast potential for structure activity/property relationships. For a connected graph G, the eccentric distance sum is defined as ξd(G)=vV(G)ecG(v)DG(v), where ecG(v) is the eccentricity of a vertex v in G and DG(v) is the sum of distances of all vertices in G from v. More recently, Yu et al. [G. Yu, L. Feng, A. Ili?, On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011) 99-107] proved that for an n-vertex tree T, ξd(T)?4n2−9n+5, with equality holding if and only if T is the n-vertex star Sn, and for an n-vertex unicyclic graph G, ξd(G)?4n2−9n+1, with equality holding if and only if G is the graph obtained by adding an edge between two pendent vertices of n-vertex star. In this note, we give a short and unified proof of the above two results.  相似文献   

9.
Let G be a connected, locally connected, claw-free graph of order n and x,y be two vertices of G. In this paper, we prove that if for any 2-cut S of G, S∩{x,y}=∅, then each (x,y)-path of length less than n-1 in G is extendable, that is, for any path P joining x and y of length h(<n-1), there exists a path P in G joining x and y such that V(P)⊂V(P) and |P|=h+1. This generalizes several related results known before.  相似文献   

10.
Let D(G) denote the minimum quantifier depth of a first order sentence that defines a graph G up to isomorphism in terms of the adjacency and equality relations. Call two vertices of G similar if they have the same adjacency to any other vertex and denote the maximum number of pairwise similar vertices in G by σ(G). We prove that σ(G)+1?D(G)?max{σ(G)+2,(n+5)/2}, where n denotes the number of vertices of G. In particular, D(G)?(n+5)/2 for every G with no transposition in the automorphism group. If G is connected and has maximum degree d, we prove that for a constant . A linear lower bound for graphs of maximum degree 3 with no transposition in the automorphism group follows from an earlier result by Cai, Fürer, and Immerman [An optimal lower bound on the number of variables for graph identification, Combinatorica 12(4) (1992) 389-410]. Our upper bounds for D(G) hold true even if we allow only definitions with at most one alternation in any sequence of nested quantifiers.In passing we establish an upper bound for a related number D(G,G), the minimum quantifier depth of a first order sentence which is true on exactly one of graphs G and G. If G and G are non-isomorphic and both have n vertices, then D(G,G)?(n+3)/2. This bound is tight up to an additive constant of 1. If we additionally require that a sentence distinguishing G and G is existential, we prove only a slightly weaker bound D(G,G)?(n+5)/2.  相似文献   

11.
The strong chromatic index of a class of graphs   总被引:1,自引:0,他引:1  
The strong chromatic index of a graph G is the minimum integer k such that the edge set of G can be partitioned into k induced matchings. Faudree et al. [R.J. Faudree, R.H. Schelp, A. Gyárfás, Zs. Tuza, The strong chromatic index of graphs, Ars Combin. 29B (1990) 205-211] proposed an open problem: If G is bipartite and if for each edge xyE(G), d(x)+d(y)≤5, then sχ(G)≤6. Let H0 be the graph obtained from a 5-cycle by adding a new vertex and joining it to two nonadjacent vertices of the 5-cycle. In this paper, we show that if G (not necessarily bipartite) is not isomorphic to H0 and d(x)+d(y)≤5 for any edge xy of G then sχ(G)≤6. The proof of the result implies a linear time algorithm to produce a strong edge coloring using at most 6 colors for such graphs.  相似文献   

12.
B. Monson 《Discrete Mathematics》2010,310(12):1759-1771
When the standard representation of a crystallographic Coxeter group G (with string diagram) is reduced modulo the integer d≥2, one obtains a finite group Gd which is often the automorphism group of an abstract regular polytope. Building on earlier work in the case that d is an odd prime, here we develop methods to handle composite moduli and completely describe the corresponding modular polytopes when G is of spherical or Euclidean type. Using a modular variant of the quotient criterion, we then describe the locally toroidal polytopes provided by our construction, most of which are new.  相似文献   

13.
Let G be a quasi-split connected reductive group over a p-adic field F. Let E be a cyclic extension of F. In the context of cyclic base change, we can attach to G and E a twisted space G* (in the sense of Labesse). Let G be an inner form of G*. If G is GL(n), SL(n) or more generally a group which we call L-stable, we define and prove the existence of a non-invariant transfer between the weighted orbital integrals of G and those of G. For GL(n), such a transfer has been conjectured by Labesse. The proof is based on previous results of harmonic analysis on Lie algebras and on a generalization of a result of Waldspurger concerning Arthur's (G,M)-families.  相似文献   

14.
The concept of degree distance of a connected graph G is a variation of the well-known Wiener index, in which the degrees of vertices are also involved. It is defined by D(G)=∑xV(G)d(x)∑yV(G)d(x,y), where d(x) and d(x,y) are the degree of x and the distance between x and y, respectively. In this paper it is proved that connected graphs of order n≥4 having the smallest degree distances are K1,n−1,BS(n−3,1) and K1,n−1+e (in this order), where BS(n−3,1) denotes the bistar consisting of vertex disjoint stars K1,n−3 and K1,1 with central vertices joined by an edge.  相似文献   

15.
In this paper we study the probability that the commutator of two randomly chosen elements in a finite group is equal to a given element of that group. Explicit computations are obtained for groups G which |G| is prime and GZ(G) as well as for groups G which |G| is prime and GZ(G)=1. This paper extends results of Rusin [see D.J. Rusin, What is the probability that two elements of a finite group commute? Pacific J. Math. 82 (1) (1979) 237-247].  相似文献   

16.
The Randi? index of a simple connected graph G is defined as ∑uvE(G)(d(u)d(v))-1/2. In this paper, we present a sharp lower bound on the Randi? index of cacti with r pendants.  相似文献   

17.
The cartesian product of a graph G with K2 is called a prism over G. We extend known conditions for hamiltonicity and pancyclicity of the prism over a graph G to the cartesian product of G with paths, cycles, cliques and general graphs. In particular we give results involving cubic graphs and almost claw-free graphs.We also prove the following: Let G and H be two connected graphs. Let both G and H have a 2-factor. If Δ(G)≤g(H) and Δ(H)≤g(G) (we denote by g(F) the length of a shortest cycle in a 2-factor of a graph F taken over all 2-factorization of F), then GH is hamiltonian.  相似文献   

18.
19.
Rank-width is a graph width parameter introduced by Oum and Seymour. It is known that a class of graphs has bounded rank-width if, and only if, it has bounded clique-width, and that the rank-width of G is less than or equal to its branch-width.The n×nsquare grid, denoted by Gn,n, is a graph on the vertex set {1,2,…,n}×{1,2,…,n}, where a vertex (x,y) is connected by an edge to a vertex (x,y) if and only if |xx|+|yy|=1.We prove that the rank-width of Gn,n is equal to n−1, thus solving an open problem of Oum.  相似文献   

20.
Let G be a connected simple graph, let X?V (G) and let f be a mapping from X to the set of integers. When X is an independent set, Frank and Gyárfás, and independently, Kaneko and Yoshimoto gave a necessary and sufficient condition for the existence of spanning tree T in G such that d T (x) for all xX, where d T (x) is the degree of x and T. In this paper, we extend this result to the case where the subgraph induced by X has no induced path of order four, and prove that there exists a spanning tree T in G such that d T (x) ≥ f(x) for all xX if and only if for any nonempty subset S ? X, |N G (S) ? S| ? f(S) + 2|S| ? ω G (S) ≥, where ω G (S) is the number of components of the subgraph induced by S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号