首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Let G=(V,E) be a graph. For r≥1, let be the family of independent vertex r-sets of G. For vV(G), let denote the star. G is said to be r-EKR if there exists vV(G) such that for any non-star family A of pair-wise intersecting sets in . If the inequality is strict, then G is strictlyr-EKR.Let Γ be the family of graphs that are disjoint unions of complete graphs, paths, cycles, including at least one singleton. Holroyd, Spencer and Talbot proved that, if GΓ and 2r is no larger than the number of connected components of G, then G is r-EKR. However, Holroyd and Talbot conjectured that, if G is any graph and 2r is no larger than μ(G), the size of a smallest maximal independent vertex set of G, then G is r-EKR, and strictly so if 2r<μ(G). We show that in fact, if GΓ and 2r is no larger than the independence number of G, then G is r-EKR; we do this by proving the result for all graphs that are in a suitable larger set Γ?Γ. We also confirm the conjecture for graphs in an even larger set Γ?Γ.  相似文献   

2.
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is a union of vertex-disjoint paths. The linear chromatic number of G is the smallest number of colors in a linear coloring of G.Let G be a graph with maximum degree Δ(G). In this paper we prove the following results: (1) ; (2) if Δ(G)≤4; (3) if Δ(G)≤5; (4) if G is planar and Δ(G)≥52.  相似文献   

3.
Let G,G be finite abelian groups with nontrivial homomorphism group . Let Ψ be a non-empty subset of . Let DΨ(G) denote the minimal integer, such that any sequence over G of length DΨ(G) must contain a nontrivial subsequence s1,…,sr, such that for some ψiΨ. Let EΨ(G) denote the minimal integer such that any sequence over G of length EΨ(G) must contain a nontrivial subsequence of length |G|,s1,…,s|G|, such that for some ψiΨ. In this paper, we show that EΨ(G)=|G|+DΨ(G)−1.  相似文献   

4.
Let denote the maximum average degree (over all subgraphs) of G and let χi(G) denote the injective chromatic number of G. We prove that if , then χi(G)≤Δ(G)+1; and if , then χi(G)=Δ(G). Suppose that G is a planar graph with girth g(G) and Δ(G)≥4. We prove that if g(G)≥9, then χi(G)≤Δ(G)+1; similarly, if g(G)≥13, then χi(G)=Δ(G).  相似文献   

5.
For a graph G, we denote by h(G,x) the adjoint polynomial of G. Let β(G) denote the minimum real root of h(G,x). In this paper, we characterize all the connected graphs G with .  相似文献   

6.
A linear coloring is a proper coloring such that each pair of color classes induces a union of disjoint paths. We study the linear list chromatic number, denoted , of sparse graphs. The maximum average degree of a graph G, denoted mad(G), is the maximum of the average degrees of all subgraphs of G. It is clear that any graph G with maximum degree Δ(G) satisfies . In this paper, we prove the following results: (1) if and Δ(G)≥3, then , and we give an infinite family of examples to show that this result is best possible; (2) if and Δ(G)≥9, then , and we give an infinite family of examples to show that the bound on cannot be increased in general; (3) if G is planar and has girth at least 5, then .  相似文献   

7.
K.L. Ng 《Discrete Mathematics》2009,309(6):1603-1610
For a connected graph G containing no bridges, let D(G) be the family of strong orientations of G; and for any DD(G), we denote by d(D) the diameter of D. The orientation number of G is defined by . Let G(p,q;m) denote the family of simple graphs obtained from the disjoint union of two complete graphs Kp and Kq by adding m edges linking them in an arbitrary manner. The study of the orientation numbers of graphs in G(p,q;m) was introduced by Koh and Ng [K.M. Koh, K.L. Ng, The orientation number of two complete graphs with linkages, Discrete Math. 295 (2005) 91-106]. Define and . In this paper we prove a conjecture on α proposed by K.M. Koh and K.L. Ng in the above mentioned paper, for qp+4.  相似文献   

8.
The energy of a graph G, denoted by E(G), is defined as the sum of the absolute values of all eigenvalues of G. Let G be a graph of order n and be the rank of the adjacency matrix of G. In this paper we characterize all graphs with . Among other results we show that apart from a few families of graphs, , where n is the number of vertices of G, and χ(G) are the complement and the chromatic number of G, respectively. Moreover some new lower bounds for E(G) in terms of are given.  相似文献   

9.
Let G be a graph of order n and circumference c(G). Let be the complement of G. We prove that and show sharpness of this bound.  相似文献   

10.
The relationship ρL(G)≤ρ(G)≤γ(G) between the lower packing number ρL(G), the packing number ρ(G) and the domination number γ(G) of a graph G is well known. In this paper we establish best possible bounds on the ratios of the packing numbers of any (connected) graph to its six domination-related parameters (the lower and upper irredundance numbers ir and IR, the lower and upper independence numbers i and β, and the lower and upper domination numbers γ and Γ). In particular, best possible constants aθ, bθ, cθ and dθ are found for which the inequalities and hold for any connected graph G and all θ∈{ir,γ,i,β,Γ,IR}. From our work it follows, for example, that and for any connected graph G, and that these inequalities are best possible.  相似文献   

11.
Let G be a simple graph of order n. Let and , where a and b are two nonzero integers and m is a positive integer such that m is not a perfect square. We say that Ac=[cij] is the conjugate adjacency matrix of the graph G if cij=c for any two adjacent vertices i and j, for any two nonadjacent vertices i and j, and cij=0 if i=j. Let PG(λ)=|λI-A| and denote the characteristic polynomial and the conjugate characteristic polynomial of G, respectively. In this work we show that if then , where denotes the complement of G. In particular, we prove that if and only if PG(λ)=PH(λ) and . Further, let Pc(G) be the collection of conjugate characteristic polynomials of vertex-deleted subgraphs Gi=G?i(i=1,2,…,n). If Pc(G)=Pc(H) we prove that , provided that the order of G is greater than 2.  相似文献   

12.
Min Chen 《Discrete Mathematics》2010,310(20):2705-2713
Let G be a graph and let c: be an assignment of 2-elements subsets of the set {1,…,5} to the vertices of G such that for any two adjacent vertices u and v,c(u) and c(v) are disjoint. Call such a coloring c a (5, 2)-coloring of G. A graph is (5,2)-colorable if and only if it has a homomorphism to the Petersen graph.The maximum average degree of G is defined as . In this paper, we prove that every triangle-free graph with is homomorphic to the Petersen graph. In other words, such a graph is (5, 2)-colorable. Moreover, we show that the bound on the maximum average degree in our result is best possible.  相似文献   

13.
For graphs G and H, let GH denote their Cartesian sum. We investigate the chromatic number and the circular chromatic number for GH. It has been proved that for any graphs G and H, . It has been conjectured that for any graphs G and H, . We confirm this conjecture for graphs G and H with special values of χc(G) and χc(H). These results improve previously known bounds on the corresponding coloring parameters for the Cartesian sum of graphs.  相似文献   

14.
Given a finite set of 2-dimensional points PR2 and a positive real d, a unit disk graph, denoted by (P,d), is an undirected graph with vertex set P such that two vertices are adjacent if and only if the Euclidean distance between the pair is less than or equal to d. Given a pair of non-negative integers m and n, P(m,n) denotes a subset of 2-dimensional triangular lattice points defined by where . Let Tm,n(d) be a unit disk graph defined on a vertex set P(m,n) and a positive real d. Let be the kth power of Tm,n(1).In this paper, we show necessary and sufficient conditions that [ is perfect] and/or [ is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring (Tm,n(d),w) and .  相似文献   

15.
A k-dimensional box is the cartesian product R1×R2×?×Rk where each Ri is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G is the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the cartesian product R1×R2×?×Rk where each Ri is a closed interval on the real line of the form [ai,ai+1]. The cubicity of G, denoted as cub(G), is the minimum k such that G is the intersection graph of a collection of k-cubes. In this paper we show that cub(G)≤t+⌈log(nt)⌉−1 and , where t is the cardinality of a minimum vertex cover of G and n is the number of vertices of G. We also show the tightness of these upper bounds.F.S. Roberts in his pioneering paper on boxicity and cubicity had shown that for a graph G, and , where n is the number of vertices of G, and these bounds are tight. We show that if G is a bipartite graph then and this bound is tight. We also show that if G is a bipartite graph then . We point out that there exist graphs of very high boxicity but with very low chromatic number. For example there exist bipartite (i.e., 2 colorable) graphs with boxicity equal to . Interestingly, if boxicity is very close to , then chromatic number also has to be very high. In particular, we show that if , s≥0, then , where χ(G) is the chromatic number of G.  相似文献   

16.
On signed cycle domination in graphs   总被引:2,自引:0,他引:2  
Baogen Xu 《Discrete Mathematics》2009,309(4):1007-1387
Let G=(V,E) be a graph, a function f:E→{−1,1} is said to be an signed cycle dominating function (SCDF) of G if ∑eE(C)f(e)≥1 holds for any induced cycle C of G. The signed cycle domination number of G is defined as is an SCDF of G}. In this paper, we obtain bounds on , characterize all connected graphs G with , and determine the exact value of for some special classes of graphs G. In addition, we pose some open problems and conjectures.  相似文献   

17.
In this paper we give a criterion for the adjacency matrix of a Cayley digraph to be normal in terms of the Cayley subset S. It is shown with the use of this result that the adjacency matrix of every Cayley digraph on a finite group G is normal iff G is either abelian or has the form for some non-negative integer n, where Q8 is the quaternion group and is the abelian group of order 2n and exponent 2.  相似文献   

18.
Suppose that G is a planar graph with maximum degree Δ and without intersecting 4-cycles, that is, no two cycles of length 4 have a common vertex. Let χ(G), and denote the total chromatic number, list edge chromatic number and list total chromatic number of G, respectively. In this paper, it is proved that χ(G)=Δ+1 if Δ≥7, and and if Δ(G)≥8. Furthermore, if G is a graph embedded in a surface of nonnegative characteristic, then our results also hold.  相似文献   

19.
Let be the signed edge domination number of G. In 2006, Xu conjectured that: for any 2-connected graph G of order n(n≥2), . In this article we show that this conjecture is not true. More precisely, we show that for any positive integer m, there exists an m-connected graph G such that . Also for every two natural numbers m and n, we determine , where Km,n is the complete bipartite graph with part sizes m and n.  相似文献   

20.
Daqing Yang 《Discrete Mathematics》2009,309(13):4614-4623
Let be a directed graph. A transitive fraternal augmentation of is a directed graph with the same vertex set, including all the arcs of and such that for any vertices x,y,z,
1.
if and then or (fraternity);
2.
if and then (transitivity).
In this paper, we explore some generalization of the transitive fraternal augmentations for directed graphs and its applications. In particular, we show that the 2-coloring number col2(G)≤O(1(G)0(G)2), where k(G) (k≥0) denotes the greatest reduced average density with depth k of a graph G; we give a constructive proof that k(G) bounds the distance (k+1)-coloring number colk+1(G) with a function f(k(G)). On the other hand, k(G)≤(col2k+1(G))2k+1. We also show that an inductive generalization of transitive fraternal augmentations can be used to study nonrepetitive colorings of graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号