首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hexagon triple is the graph consisting of the three triangles (triples) {a,b,c},{c,d,e}, and {e,f,a}, where a,b,c,d,e, and f are distinct. The triple {a,c,e} is called an inside triple. A hexagon triple system of order n is a pair (X,H) where H is a collection of edge disjoint hexagon triples which partitions the edge set of Kn with vertex set X. The inside triples form a partial Steiner triple system. We show that any Steiner triple system of order n can be embedded in the inside triples of a hexagon triple system of order approximately 3n.  相似文献   

2.
The graph consisting of the three 3-cycles (or triples) (a,b,c), (c,d,e), and (e,f,a), where a,b,c,d,e and f are distinct is called a hexagon triple. The 3-cycle (a,c,e) is called an inside 3-cycle; and the 3-cycles (a,b,c), (c,d,e), and (e,f,a) are called outside 3-cycles. A hexagon triple system of order v is a pair (X,C), where C is a collection of edge disjoint hexagon triples which partitions the edge set of 3Kv. Note that the outside 3-cycles form a 3-fold triple system. If the hexagon triple system has the additional property that the collection of inside 3-cycles (a,c,e) is a Steiner triple system it is said to be perfect. In 2004, Küçükçifçi and Lindner had shown that there is a perfect hexagon triple system of order v if and only if and v≥7. In this paper, we investigate the existence of a perfect hexagon triple system with a given subsystem. We show that there exists a perfect hexagon triple system of order v with a perfect sub-hexagon triple system of order u if and only if v≥2u+1, and u≥7, which is a perfect hexagon triple system analogue of the Doyen–Wilson theorem.  相似文献   

3.
A hybrid triple system of order v and index λ,denoted by HTS(v,λ),is a pair(X,B) where X is a v-set and B is a collection of cyclic triples and transitive triples on X,such that every ordered pair of X belongs to λ triples of B. An overlarge set of disjoint HTS(v,λ),denoted by OLHTS(v,λ),is a collection {(Y \{y},Ai)}i,such that Y is a(v+1)-set,each(Y \{y},Ai) is an HTS(v,λ) and all Ais form a partition of all cyclic triples and transitive triples on Y.In this paper,we shall discuss the existence problem of OLHTS(v,λ) and give the following conclusion: there exists an OLHTS(v,λ) if and only if λ=1,2,4,v ≡ 0,1(mod 3) and v≥4.  相似文献   

4.
A directed triple system of order v,denoted by DTS(v),is a pair (X,B) where X is a v-set and B is a collection of transitive triples on X such that every ordered pair of X belongs to exactly one triple of B.A DTS(v) (X,A) is called pure and denoted by PDTS(v) if (a,b,c) ∈ A implies (c,b,a) ∈/ A.An overlarge set of PDTS(v),denoted by OLPDTS(v),is a collection {(Y \{yi},Aij) : yi ∈ Y,j ∈ Z3},where Y is a (v+1)-set,each (Y \{yi},Aij) is a PDTS(v) and these Ais form a partition of all transitive triples on Y .In this paper,we shall discuss the existence problem of OLPDTS(v) and give the following conclusion: there exists an OLPDTS(v) if and only if v ≡ 0,1 (mod 3) and v 3.  相似文献   

5.
In a Steiner triple system STS(v) = (V, B), for each pair {a, b} ⊂ V, the cycle graph Ga,b can be defined as follows. The vertices of Ga,b are V \ {a, b, c} where {a, b, c} ∈ B. {x, y} is an edge if either {a, x, y} or {b, x, y} ∈ B. The Steiner triple system is said to be perfect if the cycle graph of every pair is a single (v − 3)-cycle. Perfect STS(v) are known only for v = 7, 9, 25, and 33. We construct perfect STS (v) for v = 79, 139, 367, 811, 1531, 25771, 50923, 61339, and 69991. © 1999 John Wiley & Sons, Inc. J Combin Designs 7: 327–330, 1999  相似文献   

6.
Let X be a v-set, v≥3. A transitive triple (x,y,z) on X is a set of three ordered pairs (x,y),(y,z) and (x,z) of X. A directed triple system of order v, denoted by DTS(v), is a pair (X,?), where X is a v-set and ? is a collection of transitive triples on X such that every ordered pair of X belongs to exactly one triple of ?. A DTS(v) is called pure and denoted by PDTS(v) if (x,y,z)∈? implies (z,y,x)??. An overlarge set of disjoint PDTS(v) is denoted by OLPDTS(v). In this paper, we establish some recursive constructions for OLPDTS(v), so we obtain some results.  相似文献   

7.
Jacob Fox 《Discrete Mathematics》2008,308(20):4773-4778
We prove that for every 4-coloring of {1,2,…,n}, with each color class having cardinality more than (n+1)/6, there exists a solution of the equation x+y=z+w with x, y, z and w belonging to different color classes. The lower bound on a color class cardinality is tight.  相似文献   

8.
A Fan Type Condition For Heavy Cycles in Weighted Graphs   总被引:2,自引:0,他引:2  
 A weighted graph is a graph in which each edge e is assigned a non-negative number w(e), called the weight of e. The weight of a cycle is the sum of the weights of its edges. The weighted degree d w (v) of a vertex v is the sum of the weights of the edges incident with v. In this paper, we prove the following result: Suppose G is a 2-connected weighted graph which satisfies the following conditions: 1. max{d w (x),d w (y)∣d(x,y)=2}≥c/2; 2. w(x z)=w(y z) for every vertex zN(x)∩N(y) with d(x,y)=2; 3. In every triangle T of G, either all edges of T have different weights or all edges of T have the same weight. Then G contains either a Hamilton cycle or a cycle of weight at least c. This generalizes a theorem of Fan on the existence of long cycles in unweighted graphs to weighted graphs. We also show we cannot omit Condition 2 or 3 in the above result. Received: February 7, 2000 Final version received: June 5, 2001  相似文献   

9.
A directed triple system of order v with index λ, briefly by DTS(v,λ), is a pair (X, B) where X is a v-set and B is a collection of transitive triples (blocks) on X such that every ordered pair of X belongs to λ blocks of B. A simple DTS(v, λ) is a DTS(v, λ) without repeated blocks. A simple DTS(v, ),) is called pure and denoted by PDTS(v, λ) if (x, y, z) ∈ B implies (z, y, x), (z, x, y), (y, x, z), (y, z, x), (x, z, y) B. A large set of disjoint PDTS(v, λ), denoted by LPDTS(v, λ), is a collection of 3(v - 2)/λ disjoint pure directed triple systems on X. In this paper, some results about the existence for LPDTS(v, λ) are presented. Especially, we determine the spectrum of LPDTS(v, 2).  相似文献   

10.
It is shown that there exists a triangle decomposition of the graph obtained from the complete graph of order v by removing the edges of two vertex disjoint complete subgraphs of orders u and w if and only if u,w, and v are odd, (mod 3), and . Such decompositions are equivalent to group divisible designs with block size 3, one group of size u, one group of size w, and vuw groups of size 1. This result settles the existence problem for Steiner triple systems having two disjoint specified subsystems, thereby generalizing the well‐known theorem of Doyen and Wilson on the existence of Steiner triple systems with a single specified subsystem. © 2005 Wiley Periodicals, Inc. J Combin Designs  相似文献   

11.
A directed triple system of order v,denoted by DTS(v,λ),is a pair(X,B)where X is a v- set and B is a collection of transitive triples on X such that every ordered pair of X belongs toλtriples of B.An overlarge set of disjoint DTS(v,λ),denoted by OLDTS(v,λ),is a collection{(Y\{y},A_i)}_i, such that Y is a(v 1)-set,each(Y\{y},A_i)is a DTS(v,λ)and all A_i's form a partition of all transitive triples of Y.In this paper,we shall discuss the existence problem of OLDTS(v,λ)and give the following conclusion:there exists an OLDTS(v,λ)if and only if eitherλ=1 and v≡0,1(mod 3),orλ=3 and v≠2.  相似文献   

12.
Claw Conditions for Heavy Cycles in Weighted Graphs   总被引:1,自引:0,他引:1  
A graph is called a weighted graph when each edge e is assigned a nonnegative number w(e), called the weight of e. For a vertex v of a weighted graph, dw(v) is the sum of the weights of the edges incident with v. For a subgraph H of a weighted graph G, the weight of H is the sum of the weights of the edges belonging to H. In this paper, we give a new sufficient condition for a weighted graph to have a heavy cycle. A 2-connected weighted graph G contains either a Hamilton cycle or a cycle of weight at least c, if G satisfies the following conditions: In every induced claw or induced modified claw F of G, (1) max{dw(x),dw(y)} c/2 for each non-adjacent pair of vertices x and y in F, and (2) all edges of F have the same weight.  相似文献   

13.
Let SSR(v, 3) denote the set of all integer b* such that there exists a RTS(v, 3) with b* distinct triples. In this paper, we determine the set SSR(v, 3) for v ≡ 3 (mod 6) and v ≥ 3 with only five undecided cases. We establish that SSR(v, 3) = P(v, 3) for v ≡ 3 (mod 6), v ≥ 21 and v ≠ 33, 39 where P(v, 3) = {mv, mv + 4, mv + 6, mv + 7, …, 3mv} and mv, = v(v ? 1)/6. As a by‐product, we remove the last two undecided cases for the intersection numbers of Kirkman triple system of order 27, this improves the known result provided in [ 2 ]. © 2003 Wiley Periodicals, Inc. J Combin Designs 11: 275–289, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jcd.10037  相似文献   

14.
Let (X, d) be a complete metric space and ${TX \longrightarrow X }$ be a mapping with the property d(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty) + ed(y, Tx) + fd(x, Ty) for all ${x, y \in X}$ , where 0 < a < 1, b, c, e, f ≥ 0, abce + f = 1 and b + c > 0. We show that if e + f > 0 then T has a unique fixed point and also if e + f ≥ 0 and X is a closed convex subset of a complete metrizable topological vector space (Y, d), then T has a unique fixed point. These results extend the corresponding results which recently obtained in this field. Finally by using our main results we give an answer to the Olaleru’s open problem.  相似文献   

15.
A (K4-e)-design on v+w points embeds a Steiner triple system (STS) if there is a subset of v points on which the graphs of the design induce the blocks of a STS. It is established that wv/3, and that when equality is met that such a minimum embedding of an STS(v) exists, except when v=15.  相似文献   

16.
For an ordered set W = {w 1, w 2,..., w k} of vertices and a vertex v in a connected graph G, the representation of v with respect to W is the k-vector r(v|W) = (d(v, w 1), d(v, w 2),... d(v, w k)), where d(x, y) represents the distance between the vertices x and y. The set W is a resolving set for G if distinct vertices of G have distinct representations with respect to W. A resolving set for G containing a minimum number of vertices is a basis for G. The dimension dim(G) is the number of vertices in a basis for G. A resolving set W of G is connected if the subgraph 〈W〉 induced by W is a nontrivial connected subgraph of G. The minimum cardinality of a connected resolving set in a graph G is its connected resolving number cr(G). Thus 1 ≤ dim(G) ≤ cr(G) ≤ n?1 for every connected graph G of order n ≥ 3. The connected resolving numbers of some well-known graphs are determined. It is shown that if G is a connected graph of order n ≥ 3, then cr(G) = n?1 if and only if G = K n or G = K 1,n?1. It is also shown that for positive integers a, b with ab, there exists a connected graph G with dim(G) = a and cr(G) = b if and only if $\left( {a,b} \right) \notin \left\{ {\left( {1,k} \right):k = 1\;{\text{or}}\;k \geqslant 3} \right\}$ Several other realization results are present. The connected resolving numbers of the Cartesian products G × K 2 for connected graphs G are studied.  相似文献   

17.
We investigate the global asymptotic behavior of solutions of the system of difference equations
where the parameters a, b, c, d, e, and f are in (0,∞) and the initial conditions x0, y0, and z0 are arbitrary non-negative numbers. We obtain some global attractivity results for the positive equilibrium of this system for different values of the parameters.  相似文献   

18.
In this paper, we consider the problem of numerical analytic continuation of an analytic function f(z)=f(x+iy) on a strip domain Ω+={z=x+iyCxR,0<y<y0}, where the data is given approximately only on the real axis y=0. This problem is severely ill-posed: the solution does not depend continuously on the given data. A novel method (filtering) is used to solve this problem and an optimal error estimate with Hölder type is proved. Numerical examples show that this method works effectively.  相似文献   

19.
The obvious necessary conditions for the existence of a nested Steiner triple system of order v containing a nested subsystem of order w are v ≥ 3w + 4 and v ≡ w ≡ 1 (mod 6). We show that these conditions are also sufficient. © 2004 Wiley Periodicals, Inc.  相似文献   

20.
Let f=a0(x)+a1(x)y+a2(x)y2 ? \Bbb Z[x,y]f=a_0(x)+a_1(x)y+a_2(x)y^2\in {\Bbb Z}[x,y] be an absolutely irreducible polynomial of degree m in x. We show that the reduction f mod p will also be absolutely irreducible if p 3 cm·H(f)emp\ge c_m\cdot H(f)^{e_m} where H (f) is the height of f and e1 = 4,e2 = 6, e3 = 6 [2/3]{2}\over{3} and em = 2 m for m S 4. We also show that the exponents em are best possible for m 1 3m\ne 3 if a plausible number theoretic conjecture is true.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号