首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let G=(V,E) be a finite, simple and undirected graph. For SV, let δ(S,G)={(u,v)∈E:uS and vVS} be the edge boundary of S. Given an integer i, 1≤i≤|V|, let the edge isoperimetric value of G at i be defined as be(i,G)=minSV;|S|=i|δ(S,G)|. The edge isoperimetric peak of G is defined as be(G)=max1≤j≤|V|be(j,G). Let bv(G) denote the vertex isoperimetric peak defined in a corresponding way. The problem of determining a lower bound for the vertex isoperimetric peak in complete t-ary trees was recently considered in [Y. Otachi, K. Yamazaki, A lower bound for the vertex boundary-width of complete k-ary trees, Discrete Mathematics, in press (doi:10.1016/j.disc.2007.05.014)]. In this paper we provide bounds which improve those in the above cited paper. Our results can be generalized to arbitrary (rooted) trees.The depth d of a tree is the number of nodes on the longest path starting from the root and ending at a leaf. In this paper we show that for a complete binary tree of depth d (denoted as ), and where c1, c2 are constants. For a complete t-ary tree of depth d (denoted as ) and dclogt where c is a constant, we show that and where c1, c2 are constants. At the heart of our proof we have the following theorem which works for an arbitrary rooted tree and not just for a complete t-ary tree. Let T=(V,E,r) be a finite, connected and rooted tree — the root being the vertex r. Define a weight function w:VN where the weight w(u) of a vertex u is the number of its successors (including itself) and let the weight index η(T) be defined as the number of distinct weights in the tree, i.e η(T)=|{w(u):uV}|. For a positive integer k, let ?(k)=|{iN:1≤i≤|V|,be(i,G)≤k}|. We show that .  相似文献   

2.
A nonincreasing sequence of nonnegative integers π=(d1,d2,…,dn) is graphic if there is a (simple) graph G of order n having degree sequence π. In this case, G is said to realizeπ. For a given graph H, a graphic sequence π is potentiallyH-graphic if there is some realization of π containing H as a (weak) subgraph. Let σ(π) denote the sum of the terms of π. For a graph H and nZ+, σ(H,n) is defined as the smallest even integer m so that every n-term graphic sequence π with σ(π)≥m is potentially H-graphic. Let denote the complete t partite graph such that each partite set has exactly s vertices. We show that and obtain the exact value of σ(Kj+Ks,s,n) for n sufficiently large. Consequently, we obtain the exact value of for n sufficiently large.  相似文献   

3.
Let be the signed edge domination number of G. In 2006, Xu conjectured that: for any 2-connected graph G of order n(n≥2), . In this article we show that this conjecture is not true. More precisely, we show that for any positive integer m, there exists an m-connected graph G such that . Also for every two natural numbers m and n, we determine , where Km,n is the complete bipartite graph with part sizes m and n.  相似文献   

4.
A graph X, with a subgroup G of the automorphism group of X, is said to be (G,s)-transitive, for some s≥1, if G is transitive on s-arcs but not on (s+1)-arcs, and s-transitive if it is -transitive. Let X be a connected (G,s)-transitive graph, and Gv the stabilizer of a vertex vV(X) in G. If X has valency 5 and Gv is solvable, Weiss [R.M. Weiss, An application of p-factorization methods to symmetric graphs, Math. Proc. Camb. Phil. Soc. 85 (1979) 43-48] proved that s≤3, and in this paper we prove that Gv is isomorphic to the cyclic group Z5, the dihedral group D10 or the dihedral group D20 for s=1, the Frobenius group F20 or F20×Z2 for s=2, or F20×Z4 for s=3. Furthermore, it is shown that for a connected 1-transitive Cayley graph of valency 5 on a non-abelian simple group G, the automorphism group of is the semidirect product , where R(G) is the right regular representation of G and .  相似文献   

5.
An independent set of a graph G is a set of pairwise non-adjacent vertices. Let α(G) denote the cardinality of a maximum independent set and fs(G) for 0≤sα(G) denote the number of independent sets of s vertices. The independence polynomial defined first by Gutman and Harary has been the focus of considerable research recently. Wingard bounded the coefficients fs(T) for trees T with n vertices: for s≥2. We generalize this result to bounds for a very large class of graphs, maximal k-degenerate graphs, a class which includes all k-trees. Additionally, we characterize all instances where our bounds are achieved, and determine exactly the independence polynomials of several classes of k-tree related graphs. Our main theorems generalize several related results known before.  相似文献   

6.
For aj,bj?1, j=1,2,…,d, we prove that the operator maps into itself for , where , and k(x,y)=φ(x,y)eig(x,y), φ(x,y) satisfies (1.2) (e.g. φ(x,y)=|xy|iτ,τ real) and the phase g(x,y)=xayb. We study operators with more general phases and for these operators we require that aj,bj>1, j=1,2,…,d, or al=bl?1 for some l∈{1,2,…,d}.  相似文献   

7.
Given a graph G, for an integer c∈{2,…,|V(G)|}, define λc(G)=min{|X|:XE(G),ω(GX)≥c}. For a graph G and for an integer c=1,2,…,|V(G)|−1, define,
  相似文献   

8.
For positive integers j?k, an L(j,k)-labeling of a digraph D is a function f from V(D) into the set of nonnegative integers such that |f(x)-f(y)|?j if x is adjacent to y in D and |f(x)-f(y)|?k if x is of distance two to y in D. Elements of the image of f are called labels. The L(j,k)-labeling problem is to determine the -number of a digraph D, which is the minimum of the maximum label used in an L(j,k)-labeling of D. This paper studies -numbers of digraphs. In particular, we determine -numbers of digraphs whose longest dipath is of length at most 2, and -numbers of ditrees having dipaths of length 4. We also give bounds for -numbers of bipartite digraphs whose longest dipath is of length 3. Finally, we present a linear-time algorithm for determining -numbers of ditrees whose longest dipath is of length 3.  相似文献   

9.
Let G be a graph of order n and S be a vertex set of q vertices. We call G,S-pancyclable, if for every integer i with 3≤iq there exists a cycle C in G such that |V(C)∩S|=i. For any two nonadjacent vertices u,v of S, we say that u,v are of distance two in S, denoted by dS(u,v)=2, if there is a path P in G connecting u and v such that |V(P)∩S|≤3. In this paper, we will prove that if G is 2-connected and for all pairs of vertices u,v of S with dS(u,v)=2, , then there is a cycle in G containing all the vertices of S. Furthermore, if for all pairs of vertices u,v of S with dS(u,v)=2, , then G is S-pancyclable unless the subgraph induced by S is in a class of special graphs. This generalizes a result of Fan [G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory B 37 (1984) 221-227] for the case when S=V(G).  相似文献   

10.
The detour order of a graph G, denoted by τ(G), is the order of a longest path in G. A subset S of V(G) is called a Pn-kernel of G if τ(G[S])≤n−1 and every vertex vV(G)−S is adjacent to an end-vertex of a path of order n−1 in G[S]. A partition of the vertex set of G into two sets, A and B, such that τ(G[A])≤a and τ(G[B])≤b is called an (a,b)-partition of G. In this paper we show that any graph with girth g has a Pn+1-kernel for every . Furthermore, if τ(G)=a+b, 1≤ab, and G has girth greater than , then G has an (a,b)-partition.  相似文献   

11.
We study the existence, nonexistence and multiplicity of positive solutions for a family of problems −Δpu=fλ(x,u), , where Ω is a bounded domain in RN, N>p, and λ>0 is a parameter. The family we consider includes the well-known nonlinearities of Ambrosetti-Brezis-Cerami type in a more general form, namely λa(x)uq+b(x)ur, where 0?q<p−1<r?p−1. Here the coefficient a(x) is assumed to be nonnegative but b(x) is allowed to change sign, even in the critical case. Preliminary results of independent interest include the extension to the p-Laplacian context of the Brezis-Nirenberg result on local minimization in and , a C1,α estimate for equations of the form −Δpu=h(x,u) with h of critical growth, a strong comparison result for the p-Laplacian, and a variational approach to the method of upper-lower solutions for the p-Laplacian.  相似文献   

12.
13.
This paper studies the game chromatic number and game colouring number of the square of graphs. In particular, we prove that if G is a forest of maximum degree Δ≥9, then , and there are forests G with . It is also proved that for an outerplanar graph G of maximum degree Δ, , and for a planar graph G of maximum degree Δ, .  相似文献   

14.
We prove that for every graph H with the minimum degree δ?5, the third iterated line graph L3(H) of H contains as a minor. Using this fact we prove that if G is a connected graph distinct from a path, then there is a number kG such that for every i?kG the i-iterated line graph of G is -linked. Since the degree of Li(G) is even, the result is best possible.  相似文献   

15.
Let jk≥0 be integers. An ?-L(j,k)-labelling of a graph G=(V,E) is a mapping ?:V→{0,1,2,…,?} such that |?(u)−?(v)|≥j if u,v are adjacent and |?(u)−?(v)|≥k if they are distance two apart. Let λj,k(G) be the smallest integer ? such that G admits an ?-L(j,k)-labelling. Define to be the smallest ? if G admits an ?-L(j,k)-labelling with ?(V)={0,1,2,…,?} and otherwise. An ?-cyclic L(j,k)-labelling is a mapping ?:VZ? such that |?(u)−?(v)|?j if u,v are adjacent and |?(u)−?(v)|?k if they are distance two apart, where |x|?=min{x,?x} for x between 0 and ?. Let σj,k(G) be the smallest ?−1 of such a labelling, and define similarly to . We determine λ2,0, , σ2,0 and for all Hamming graphs Kq1Kq2?Kqd (d≥2, q1q2≥?≥qd≥2) and give optimal labellings, with the only exception being for q≥4. We also prove the following “sandwich theorem”: If q1 is sufficiently large then for any graph G between Kq1Kq2 and Kq1Kq2?Kqd, and moreover we give a labelling which is optimal for these eight invariants simultaneously.  相似文献   

16.
Let f be a graph function which assigns to each graph H a non-negative integer f(H)≤|V(H)|. The f-game chromatic number of a graph G is defined through a two-person game. Let X be a set of colours. Two players, Alice and Bob, take turns colouring the vertices of G with colours from X. A partial colouring c of G is legal (with respect to graph function f) if for any subgraph H of G, the sum of the number of colours used in H and the number of uncoloured vertices of H is at least f(H). Both Alice and Bob must colour legally (i.e., the partial colouring produced needs to be legal). The game ends if either all the vertices are coloured or there are uncoloured vertices with no legal colour. In the former case, Alice wins the game. In the latter case, Bob wins the game. The f-game chromatic number of G, χg(f,G), is the least number of colours that the colour set X needs to contain so that Alice has a winning strategy. Let be the graph function defined as , for any n≥3 and otherwise. Then is called the acyclic game chromatic number of G. In this paper, we prove that any outerplanar graph G has acyclic game chromatic number at most 7. For any integer k, let ?k be the graph function defined as ?k(K2)=2 and ?k(Pk)=3 (Pk is the path on k vertices) and ?k(H)=0 otherwise. This paper proves that if k≥8 then for any tree T, χg(?k,T)≤9. On the other hand, if k≤6, then for any integer n, there is a tree T such that χg(?k,T)≥n.  相似文献   

17.
A (d,1)-total labelling of a graph G assigns integers to the vertices and edges of G such that adjacent vertices receive distinct labels, adjacent edges receive distinct labels, and a vertex and its incident edges receive labels that differ in absolute value by at least d. The span of a (d,1)-total labelling is the maximum difference between two labels. The (d,1)-total number, denoted , is defined to be the least span among all (d,1)-total labellings of G. We prove new upper bounds for , compute some for complete bipartite graphs Km,n, and completely determine all for d=1,2,3. We also propose a conjecture on an upper bound for in terms of the chromatic number and the chromatic index of G.  相似文献   

18.
This paper is concerned with solutions to the Dirac equation: −iαkku+aβu+M(x)u=Ru(x,u). Here M(x) is a general potential and R(x,u) is a self-coupling which is super-quadratic in u at infinity. We use variational methods to study this problem. By virtue of some auxiliary system related to the “limit equation” of the Dirac equation, we construct linking levels of the variational functional ΦM such that the minimax value cM based on the linking structure of ΦM satisfies , where is the least energy of the “limit equation”. Thus we can show the c(C)-condition holds true for all and consequently obtain one least energy solution to the Dirac equation.  相似文献   

19.
Let Ω be a measurable subset of a compact group G of positive Haar measure. Let be a non-negative function defined on the dual space and let L2(μ) be the corresponding Hilbert space which consists of elements (ξπ)π∈suppμ satisfying , where ξπ is a linear operator on the representation space of π, and is equipped with the inner product: . We show that the Fourier transform gives an isometric isomorphism from L2(Ω) onto L2(μ) if and only if the restrictions to Ω of all matrix coordinate functions , π∈suppμ, constitute an orthonormal basis for L2(Ω). Finally compact connected Lie groups case is studied.  相似文献   

20.
In this paper, we investigate the existence of resolvable group divisible designs (RGDDs) with block size four, group-type hn and index three. The necessary conditions for the existence of such a design are n?4 and hn≡0. These necessary conditions are shown to be sufficient except for (h,n)∈{(2,4),(2,6)} and possibly excepting (h,n)=(2,54).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号