首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Lindstedt BA 《Electrophoresis》2005,26(13):2567-2582
DNA fingerprinting has attracted considerable interest as means for identifying, tracing and preventing the dissemination of infectious agents. Various methods have been developed for typing of pathogenic bacteria, which differ in discriminative power, reproducibility and ease of interpretation. During recent years a typing method, which uses the information provided by whole genome sequencing of bacterial species, has gained increased attention. Short sequence repeat (SSR) motifs are known to undergo frequent variation in the number of repeated units through cellular mechanisms most commonly active during chromosome replication. A class of SSRs, named variable number of tandem repeats (VNTRs), has proven to be a suitable target for assessing genetic polymorphisms within bacterial species. This review attempts to give an overview of bacterial agents where VNTR-based typing, or multiple-locus variant-repeat analysis (MLVA) has been developed for typing purposes, together with addressing advantages and drawbacks associated with the use of tandem repeated DNA motifs as targets for bacterial typing and identification.  相似文献   

2.
We describe selective "fluorous" effects in the active site of a DNA polymerase, by using nucleotide analogues whose pairing edges are perfluorinated. The 5'-triphosphate deoxynucleotide derivatives of DNA base analogues 2,3,4,5-tetrafluorobenzene ((F)B) and 4,5,6,7-tetrafluoroindole ((F)I), as well as hydrocarbon controls benzene (B) and indole (I), were synthesized and studied as substrates for the DNA Polymerase I Klenow fragment (KF exo-). Modified nucleotides were present in the DNA template or were supplied as nucleoside triphosphates in studies of the steady-state kinetics of single nucleotide insertion. When supplied opposite the non-natural bases in the template strand, the hydrophobic nucleoside triphosphates were incorporated by up to two orders of magnitude more efficiently than the natural deoxynucleoside triphosphates. The purine-like fluorinated indole nucleotide ((F)I) was the most efficiently inserted of the four hydrophobic analogues, with the most effective incorporation occurring opposite the pyrimidine-like tetrafluorobenzene ((F)B). In all cases, the polyfluorinated base pairs were more efficiently processed than the analogous hydrocarbon pairs. A preliminary test of polymerase extension beyond these pairs showed that only the (F)B base is appreciably extended; the inefficient extension is consistent with recently published data regarding other nonpolar base pairs. These results suggest the importance of hydrophobicity, stacking, and steric interactions in the polymerase-mediated replication of DNA base pairs that lack hydrogen bonds. These findings further suggest that the enhanced hydrophobicity of polyfluoroaromatic bases could be employed in the design of new, selective base pairs that are orthogonal to the natural Watson-Crick pairs used in replication.  相似文献   

3.
The use of the insect cell/baculovirus expression system for producing recombinant proteins of bacterial, plant, insect, and mammalian origin has become widespread. The popularity of this eukaryotic expression system is due to many factors, including (1) potentially high protein expression levels, (2) ease and speed of genetic engineering, (3) ability to accommodate large DNA inserts, (4) protein processing similar to higher eukaryotic cells (e.g., mammalian cells), and (5) ease of insect cell growth (e.g., suspension growth). The following review of the literature discusses two engineering aspects of recombinant protein synthesis by insect cell cultures: bioreactor scale-up and insect cell line selection. Following this review patent abstracts and additional literature pertaining to expression of recombinant proteins in insect cell culture are listed.  相似文献   

4.
The use of the insect cell/baculovirus expression system for producing recombinant proteins of bacterial, plant, insect, and mammalian origin has become widespread. The popularity of this eukaryotic expression system is due to many factors, including (1) potentially high protein expression levels, (2) ease and speed of genetic engineering, (3) ability to accommodate large DNA inserts, (4) protein processing similar to higher eukaryotic cells (e.g., mammalia cells), and (5) ease of insect cell growth (e.g., suspension growth). The following review of the literature discusses two engineering aspects of recombinant protein synthesis by insect cell cultures: bioreactor scale-up and insect cell line selection. Following this review patent abstracts and additional literature pertaining to expression of recombinant proteins in insect cell culture are listed.  相似文献   

5.
靶向抑制DNA拓扑异构酶的抗肿瘤药物研究   总被引:1,自引:0,他引:1  
DNA拓扑异构酶是真核细胞和原核细胞中的一种基本酶,广泛存在于细胞核中,对DNA的转录、复制以及基因表达过程中的DNA拓扑结构的改变起着重要的作用。研究发现DNA拓扑异构酶在肿瘤组织中高度表达,许多抗肿瘤药物的作用机制与抑制拓扑异构酶有关,目前拓扑异构酶已成为筛选抗肿瘤药物的重要靶点。  相似文献   

6.
Cell proliferation and differentiation in multicellular organisms are partially regulated by signaling from the extracellular matrix. The ability to mimic an extracellular matrix would allow particular cell types to be specifically recognized, which is central to tissue engineering. We present a new functional DNA‐based material with cell‐adhesion properties. It is generated by using covalently branched DNA as primers in PCR. These primers were functionalized by click chemistry with the cyclic peptide c(RGDfK), a peptide that is known to predominantly bind to αvβ3 integrins, which are found on endothelial cells and fibroblasts, for example. As a covalent coating of surfaces, this DNA‐based material shows cell‐repellent properties in its unfunctionalized state and gains adhesiveness towards specific target cells when functionalized with c(RGDfK). These cells remain viable and can be released under mild conditions by DNase I treatment.  相似文献   

7.
Recombination of genetic material enables the creation of new bacterial strains which can synthesize specific proteins in large amounts. Such bacteria permit the production of previously inaccessible proteins. They can therefore be used as starting materials for the production of drugs which will open up new paths for therapy. Several proteins produced by bacteria after DNA recombination are presently undergoing clinical trials while others are already being produced on a large scale. Thus, in the area of recombinant DNA techniques the transition from the research laboratory to industrial exploitation has occurred much faster than was anticipated several years ago. The methods, possibilities and problems encountered in the synthesis of peptide hormones by bacteria after DNA recombination are outlined, using insulin, somatostatin, and growth hormone as examples. Great emphasis is placed on the molecular biological aspects of this approach.  相似文献   

8.
Naturally occurring antimicrobial peptides (AMPs) are powerful defence tools to tackle pathogenic microbes. However, limited natural production and high synthetic costs in addition to poor selectivity limit large‐scale use of AMPs in clinical settings. Here, we present a series of synthetic AMPs (SAMPs) that exhibit highly selective and potent killing of Mycobacterium (minimum inhibitory concentration <20 μg mL?1) over E. coli or mammalian cells. These SAMPs are active against rapidly multiplying as well as growth saturated Mycobacterium cultures. These SAMPs are not membrane‐lytic in nature, and are readily internalized by Mycobacterium and mammalian cells; whereas in E. coli, the lipopolysaccharide layer inhibits their cellular uptake, and hence, their antibacterial action. Upon internalization, these SAMPs interact with the unprotected genomic DNA of mycobacteria, and impede DNA‐dependent processes, leading to bacterial cell death.  相似文献   

9.
The ability of alternative nucleic acids, in which all four nucleobases are substituted, to replicate in vitro and to serve as genetic templates in vivo was evaluated. A nucleotide triphosphate set of 5‐chloro‐2′‐deoxyuridine, 7‐deaza‐2′‐deoxyadenosine, 5‐fluoro‐2′‐deoxycytidine, and 7‐deaza‐2′deoxyguanosine successfully underwent polymerase chain reaction (PCR) amplification using templates of different lengths (57 or 525mer) and Taq or Vent (exo‐) DNA polymerases as catalysts. Furthermore, a fully morphed gene encoding a dihydrofolate reductase was generated by PCR using these fully substituted nucleotides and was shown to transform and confer trimethoprim resistance to E. coli. These results demonstrated that fully modified templates were accurately read by the bacterial replication machinery and provide the first example of a long fully modified DNA molecule being functional in vivo.  相似文献   

10.
2-D DNA display is a simple separation method that provides a fast and economical way of visualizing polymorphism and comparing genomes. The DNA fragments are separated first according to their size by standard gel electrophoresis and then according to their sequence composition using denaturing gradient gel electrophoresis. First developed by Fischer and Lerman (Cell 1979, 16, 191-200), this method has recently been used to distinguish strains within a bacterial species. The genomic restriction fragments are displayed as spots on a 2-D surface. Although most of the relevant physical mechanisms are understood, this technique is mostly empirical and remains essentially qualitative. In view of optimizing this procedure, we combine our understanding of the different physical mechanisms at play to develop a complete numerical model to predict the relative coordinates of the spots as a function of the corresponding DNA sequence and of the experimental conditions. We experimentally validate our model by predicting the outcome of a 2-D display of the lambda phage genome. It thus becomes possible to optimize in silico the experimental parameters, to predict whether specific mutations as well as yet undescribed genetic polymorphisms can be resolved, and to assist in interpreting the experimental data.  相似文献   

11.
DNA是生物体中储存和传递遗传信息的重要物质。双链DNA分子中碱基对的紧密堆积为电子传递提供了有利条件,DNA内的电子转移与许多生物学功能密切相关,可能诱发遗传信息的错读和引起DNA损伤,导致细胞的突变和癌变。本文介绍了DNA电子传递的多种可能机理,就DNA电子传递的各种理论模型进行了讨论,详细介绍了实验体系的设计和研究方法,分析了各种影响电子传递的因素,对近10多年来DNA电子传递的研究工作进行了综述。  相似文献   

12.
The ability to detect DNA polymorphisms using molecular genetic techniques has revolutionized the forensic analysis of biological evidence. DNA typing now plays a critical role within the criminal justice system, but one of the limiting factors with the technology is that DNA isolated from biological stains recovered from the crime scene is sometimes so damaged as to be intractable to analysis. Potential remedies for damaged DNA are likely to be dependent upon the precise nature of the DNA damage present in any particular sample but, unfortunately, current knowledge of the biochemical nature, and the extent, of such DNA damage in dried biological stains is rudimentary. As a model for DNA damage assessment in biological stains recovered from crime scenes, we have subjected human bloodstains and naked DNA in the hydrated and dehydrated states to varying doses of UVC radiation. It was possible to damage the DNA sufficiently in a bloodstain to cause a standard autosomal short tandem repeat (STR) profile to be lost. However, a detailed analysis of the process, based upon assays developed to detect bipyrimidine photoproducts (BPPPs), single- and double-strand breaks, and DNA–DNA crosslinks, produced some unexpected findings. Contrary to the situation with living tissues or cells in culture, the predominant UVC-induced damage to DNA in bloodstains appears not to be pyrimidine dimers. Although some evidence for the presence of BPPPs and DNA crosslinks was obtained, the major form of UVC damage causing genetic profile loss appeared to be single-strand breaks. It was not possible, however, to preclude the possibility that a combination of damage types was responsible for the profile loss observed. We demonstrate here that a significant measure of protection against UVC-mediated genetic profile loss in dried biological stain material is afforded by the dehydrated state of the DNA and, to a lesser extent, the DNA cellular milieu.  相似文献   

13.
14.
Co(II), Ni(II), Cu(II), Zn(II), and VO(IV) complexes containing a versatile β-diketone Schiff-base ligand (obtained by the condensation of 3-furan-2-ylmethylene-2,4-dione and 2-aminophenol) have been synthesized and characterized. Microanalytical, magnetic, and spectroscopic data reveal that the central metal is coordinated to two oxygens of phenolate and two nitrogens of imine of the ligand. Binding of synthesized complexes with calf thymus DNA has been investigated by spectroscopic and electrochemical methods and viscosity measurements. The complexes are able to form adducts with DNA and to distort the double helix by changing the base stacking. Electrostatic binding of vanadyl complex is observed from the weak hypochromism in electronic absorption spectra and no change in the viscosity with DNA. Oxidative DNA cleavage activities of the complexes are studied with supercoiled pUC19 DNA using gel electrophoresis. The hydroxyl radical (OH?) is likely to be the species responsible for the cleavage of pUC19 DNA by the synthesized complexes. Under our experimental conditions, the vanadyl complex has no significant cleavage of DNA. The compounds have been screened for activity against several bacterial and fungal strains and the results are compared with the activity of standard drugs.  相似文献   

15.
Many cells have the ability to recognize and eliminate damage to their DNA, particularly thymine dimers formed by UV light. The elimination of this damage may be achieved by enzymatic, light-dependent cleavage of the dimers into the monomers (photoreactivation) or more frequently by dark repair, in which the damaged part is completely removed from the, DNA. In this repair process, the DNA is incised by an endonuclease in the immediate vicinity of the thymine dimers. Oligonucleotides containing the thymine dimer are removed hydrolytically from the DNA by the 5→3′ exonuclease activity of DNA polymerase I (Kornberg enzyme). The resulting gaps are immediately closed by a de novo synthesis with the aid of the same DNA polymerase I, the complementary strand serving as a template (excision repair). The final step is the formation of the phosphodiester bond between the newly synthesized DNA fragment and the old DNA strand by a DNA ligase. Xeroderma pigmentosum patients lack the endonuclease as a result of a genetic defect; they therefore cannot eliminate thymine dimers from their DNA, and are extremely sensitive to sunlight. All information so far suggests that genetic recombination and DNA repair are performed by the same enzyme system.  相似文献   

16.
探针体耐尔蓝(NB)与DNA结合反应研究   总被引:1,自引:0,他引:1  
应用微相吸附-光谱修正(MPASC)新技术研究DNA与耐尔蓝(NB)探针分子间的相互作用,分析生物大分子内静电场的形成与Langmuir吸附的关联性,测定了结合产物结合比、平衡常数等.通过在pH=10.38介质中对DNA-NB反应的光谱分析,结果表明产物结合比NB∶ DNA-P=3∶ 1、平衡常数K=3.33×105,摩尔吸收系数ε660 nm=4.81×103 L/mol cm.样品分析表明DNA回收率95.6%~108%,相对标准偏差RSD=2.8%.  相似文献   

17.
Hua NP  Naganuma T 《Electrophoresis》2007,28(3):366-372
DNA base composition expressed as mol% of guanine plus cytosine (% GC) or GC content is a key parameter of bacterial taxonomy and genomic analyses. Direct chemical determination methods such as HPLC as well as indirect methods based on physical properties of deoxyribonucleic acid (DNA), melting point (T(m)), and buoyant density (B(d)) have been conventionally applied to determine the GC content. However, these methods require relatively large amounts of sample DNA, time, and labor. We have developed a protocol to determine the GC content by fine separation of nucleosides with CZE. Genomic DNAs with known GC content from 23 bacterial strains were determined by CE at the optimized conditions of 27 degrees C, 20 kV in 50 mM of NaHCO(3) (pH 9.0) and 70 mM SDS added. Nucleosides from <1 microg of DNA hydrolyzed with nuclease-P1 and bacterial alkaline phosphatase were separated in a 75 microm wide and 80 cm long silica capillary. The nucleoside peak areas were determined at 254 nm in less than 12 min. The CE-based determination of GC content requires only small amounts of DNA, and thus should be applicable to environmental genomics (metagenomics), as >90% of environmental micro-organisms are nonculturable and produce only small amounts of genomic DNA.  相似文献   

18.
We report the structural effect of 2'-deoxy-2',2'-difluorocytidine (dFdC) insertions in the DNA strand of a DNA : RNA hybrid duplex and in a self-complementary DNA : DNA duplex. In both cases, the modification slightly destabilizes the duplex and provokes minor local distortions that are more pronounced in the case of the DNA : RNA hybrid. Analysis of the solution structures determined by NMR methods show that dFdC is an adaptable derivative that adopts North type sugar conformation when inserted in pure DNA, or a South sugar conformation in the context of DNA : RNA hybrids. In this latter context, South sugar pucker favors the formation of a 2'F⋅⋅H8 attractive interaction with a neighboring purine, which compensates the destabilizing effect of base pair distortions. These interactions share some features with pseudohydrogen bonds described previously in other nucleic acids structures with fluorine modified sugars.  相似文献   

19.
以金属Cu(Ⅱ),Ni(Ⅱ),Cd(Ⅱ)为中心离子,分别合成2-(2-吡啶基)苯并噻唑为配体的配合物,其中得到了以Cu(Ⅱ)为中心离子的晶体,并培养出了单晶.该配合物是五配位的三斜晶系,上述金属配合物都能与DNA结合,并能有效断裂DNA链,可以通过与癌症细胞的DNA发生解旋DNA的作用从而引起癌症细胞DNA的损伤,使癌细胞的DNA在复制和转录的过程中受到阻碍,从而阻止癌细胞的生长和分裂,并导致癌细胞的死亡.为其在药物开发和分子生物学中的应用提供了有价值的信息.  相似文献   

20.
The influence of cobalt ferrite particles, with non-modified or modified surface, on the course of polymerase chain reaction (PCR) was investigated. DNA isolated from bacterial cells of Bifidobacterium bifidum was used in PCR evaluation of magnetic microspheres. The presence of cobalt ferrite particles inhibits PCR amplification. The effect is not dependent on the functional groups of the modifying reagents used (none, amino, carboxyl). Amplification was improved after the magnetic separation of magnetic particles. Proposed indirect method enabled verification of the suitability of designed particles for their application in PCR assays. Magnetic particles coated with alginic acid under high PEG and sodium chloride concentration were used for the isolation of PCR-ready bacterial DNA from various dairy products. DNA was isolated from crude bacterial cell lysates without phenol extraction of samples. Bifidobacterium and Lactobacillus DNAs were identified in dairy products using PCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号