首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Chirality transfer is widely observed in life processes, and many artificial chiral transfer systems have been developed. In these systems, chiral information is transferred from chiral inducers to chiral acceptors by a direct chiral induction process and a direct chiral memorization process. We have developed ternary nondirect chiral transfer systems based on pillar[5]arenes, in which a third factor was introduced as a regulator. The planar chirality of an acceptor was induced and memorized by a chiral inducer with precise control by a regulator. In the chiral induction period, the feed sequence of the chiral inducer and regulator affected the chiral induction behavior of the chiral acceptor. The chiral memory ability of the acceptor was substantially improved by the combined action of the chiral inducer and regulator.  相似文献   

2.
We have synthesized a series of structurally novel chiral ionic liquids which have a either chiral cation, chiral anion, or both. Cations are an imidazolium group, while anions are based on a borate ion with spiral structure and chiral substituents. Both (or all) stereoisomeric forms of each compound in the series can be readily synthesized in optically pure form by a simple one-step process from commercially available reagents. In addition to the ease of preparation, most of the chiral ILs in this series are liquid at room temperature with a solid to liquid transformation temperature as low as -70 degrees C and have relatively high thermal stability (up to at least 300 degrees C). Circular dichroism and X-ray crystallographic results confirm that the reaction to form the chiral spiral borate anion is stereospecific, namely, only one of two possible spiral stereoisomers was formed. Results of NMR studies including 1H{15N} heteronuclear single quantum coherence (HSQC) show that these chiral ILs exhibit intramolecular as well as intermolecular enantiomeric recognition. Intramolecularly, the chiral anion of an IL was found to exhibit chiral recognition toward the cation. Specifically, for a chiral IL composing with a chiral anion and a racemic cation, enantiomeric recognition of the chiral anion toward both enantiomers of the cation lead to pronounced differences in the NMR bands of the cation enantiomers. The chiral recognition was found to be dependent on solvent dielectric constant, concentration, and structure of the ILs. Stronger enantiomeric recognition was found in solvent with relatively lower dielectric constants (CDCl3 compared to CD3CN) and at higher concentration of ILs. Also, stronger chiral recognition was found for anions with a relatively larger substituent group (e.g., chiral anion with a phenylmethyl group exhibits stronger chiral recognition compared to that with a phenyl group, and an anion with an isobutyl group has the weakest chiral recognition). Chiral anions were also found to exhibit intermolecular chiral recognition. Enantiomeric discrimination was found for a chiral IL composed of a chiral anion and achiral cation toward another chiral molecule such as a quinine derivative.  相似文献   

3.
《中国化学快报》2022,33(8):3613-3622
Chiral pillar[n]arenes have shown great research value and application prospect in construction of chiral materials and chiral applications, due to their inherent planar chiral configurations, chiral recognition ability, easy modification and highly symmetric hydrophobic cavity. This review systematically summarized the conformation inversion factors of planar chiral pillar[5]arenes (pR/pS), such as solvents, temperature, substituent size, alkyl chains, chiral and achiral guest molecules. We firstly introduced the applications of chiral pillar[n]arenes for constructing chiral materials and pointed out that planar conformation inversion showed a great potential role in constructing chiral materials. Then, we mainly concluded the chiral applications of chiral and planar chiral pillar[n]arenes like chiral enantiomer analysis by circular dichroism, electrochemistry or chiral fluorescence sensing. From this review, we found that the inherent planar chiral conformation of chiral pillar[n]arenes have played a very important role in chiral field in the future.  相似文献   

4.
《Tetrahedron: Asymmetry》2005,16(4):801-807
Chiral recognition by positive ion electrospray ionization (ESI) mass spectrometry is demonstrated through the adaptation of chromatographically derived chiral recognition systems. Solutions of soluble analogues of chiral selectors used in Pirkle-type chiral stationary phases, when mixed with a chiral analyte, whose enantiomers are known to be resolved on the analogous chiral stationary phase, are shown to afford selector–analyte complexes in the mass spectrum. Pseudo-enantiomeric chiral selectors, where each pseudo-enantiomer has a different mass and a higher affinity for the opposite analyte enantiomer of its pseudo-antipode, were prepared. When mixed with a chiral analyte, solutions of these pseudo-enantiomeric selectors afford selector–analyte complexes in the ESI-mass spectrum where the relative intensities of the selector–analyte complexes are dependent on the enantiomeric composition of the analyte. Additionally, the sense of the observed chiral recognition is in agreement with the sense of chiral recognition observed chromatographically.  相似文献   

5.
Chiral inorganic superstructures have received considerable interest due to the chiral communication between inorganic compounds and chiral organic additives. However, the demanding fabrication and complex multilevel structure seriously hinder the understanding of chiral transfer and self-assembly mechanisms. Herein, we use chiral CuO superstructures as a model system to study the formation process of hierarchical chiral structures. Based on a simple and mild synthesis route, the time-resolved morphology and the in situ chirality evolution could be easily followed. The morphology evolution of the chiral superstructure involves hierarchical assembly, including primary nanoparticles, intermediate bundles, and superstructure at different growth stages. Successive redshifts and enhancements of the CD signal support chiral transfer from the surface penicillamine to the inorganic superstructure. Full-field electro-dynamical simulations reproduced the structural chirality and allowed us to predict its modulation. This work opens the door to a large family of chiral inorganic materials where chiral molecule-guided self-assembly can be specifically designed to follow a bottom-up chiral transfer pathway.  相似文献   

6.
Lattice structures, including reflection lattice planes and lattice constant, of liquid-crystal blue phase I (BPI) are studied via the measurements on reflection spectrum and Kossel diagram as concentration of a chiral dopant is changed. Peaks of the reflection wavelength in BPI are mainly dominated by the lattice plane and the lattice constant, which are affected by the chiral concentration. In the chiral nematic state, as decreasing the chiral concentration the reflection peak will shift to a longer wavelength because the helical pitch linearly depends on the chiral concentration and becomes longer. However, this dependence of the chiral concentration and reflection wavelength is broken in the BPI. The reflection peak of BPI moves to a short wavelength when the chiral concentration is less due to the contraction of the lattice constant as well as helical pitch. Moreover, when the concentration of the chiral dopant increases over a certain value, a discontinuous shift in reflection peak occurs due to the production of the different lattice planes. It means that the relationship between the chiral concentration and the helical pitch in BPI is not the same as it in the chiral nematic phase and should be reconsidered.  相似文献   

7.
In this paper, the preparation and use of chiral surfaces derived from enantiomerically pure crystals of amino acids are described. For this purpose, a self-assembly process to grow thin chiral films of (+)-L- or (-)-D-cysteine on gold surfaces was chosen. These chiral films were utilized as crystallization catalysts in the crystallization of enantiomers from solutions. To demonstrate the chiral discrimination power of the chiral surfaces in crystallization processes, the crystallization of racemic histidine onto the chiral films was investigated. Our study demonstrates the potential application of chiral films to control chirality throughout crystallization, where one enantiomer crystallizes onto the chiral surfaces with relative high enantiomeric excess. In addition, crystallization of pure histidine enantiomers onto chiral films results in strong crystal morphology modification with preferred orientation.  相似文献   

8.
The recent progress in chiral ionic liquids with respect to their syntheses and applications in enantioselective reactions and chiral recognition is described. In addition to the conventional chiral ionic liquids derived from chiral natural products, a library of novel chiral spiro compounds, including spiro bis(pyridinium) and spiro bis(imidazolium) salt, is also described.  相似文献   

9.
A chiral ionic liquid (IL), S-[3-(chloro-2-hydroxypropyl)trimethylammonium] [bis((trifluoromethyl)sulfonyl)amide] (S-[CHTA](+)[Tf(2)N](-)), which can be easily and readily synthesized in a one-step process from commercially available reagents, can be successfully used both as co-electrolyte and as a chiral selector for CE. A variety of pharmaceutical products including atenolol, propranolol, warfarin, indoprofen, ketoprofen, ibuprofen and flurbiprofen, can be successfully and baseline separated with the use of this IL as electrolyte. Interestingly, while S-[CHTA](+)[Tf(2)N](-) can also serve as a chiral selector, enantioseparation cannot be successfully achieved with S-[CHTA](+)[Tf(2)N](-) as the only chiral selector. In the case of ibuprofen, a second chiral selector, namely a chiral anion (sodium cholate), is needed for the chiral separation. For furbiprofen, in addition to S-[CHTA](+)[Tf(2)N](-) and sodium cholate, a third and neutral chiral selector, 1-S-octyl-beta-d-thioglucopyranoside (OTG), is also needed. Due to the fact that the chirality of this chiral IL resides on the cation (i.e., -[CHTA](+)), and that needed additional chiral selector(s) are either chiral anion (i.e., cholate) or chiral neutral compound (OTG), the results obtained seem to suggest that additional chiral selector(s) are needed to provide the three-point interactions needed for chiral separations.  相似文献   

10.
Several chiral azobenzene compounds having different chiral substituents were synthesized. A cholesteric phase was induced by mixing each chiral azobenzene compound with a host non-chiral nematic liquid crystal (E44). The helical twisting power (HTP) as well as the change in HTP by trans-cis photoisomerization of the chiral azobenzene compound was dependent on the structure of the chiral substituents. A compensated nematic phase was induced by combination of E44, a chiral azobenzene compound and a non-photochromic chiral compound. Reversible switching between the compensated nematic phase and cholesteric phase was brought about by trans-cis photoisomerization of the chiral azobenzene compound in the liquid crystalline systems. An azobenzene compound substituted with a menthyl group showed the highest efficiency as the trigger for the switching; this efficiency was related to the compactness of the chiral group substituted within the azobenzene core moiety.  相似文献   

11.
The electrochemically driven transfer of the chiral anions of d- and l-tryptophan across the interface water/chiral liquid (d- or l-menthol) is stereoselective, and it can be used to determine quantitatively the difference in Gibbs energies for the solvation of chiral ions in chiral liquids. The ion transfer can be achieved in a three-phase arrangement where a droplet of the chiral liquid containing decamethylferrocene as the electroactive redox probe is attached to a graphite electrode immersed in the aqueous solution containing the chiral ions.  相似文献   

12.
Fritless particle-loaded monoliths for chiral capillary electrochromatographic (CEC) separation were prepared. Silica particles containing a chiral selector are suspended in a monomer solution, which is drawn into the capillary followed by in situ polymerization. Thereby the silica-based particles containing the chiral selector are embedded in a nonchiral continuous bed. This kind of chiral stationary phase is inexpensive, easy, and reproducible to prepare and circumvents the preparation of frits. As a model, teicoplanin aglycone as chiral selector bonded to 3 microm silica particles was used. The applicability of this approach is demonstrated by means of the chiral separation of aliphatic and aromatic amino acids and dipeptides. As a further application, the chiral selector ristocetin A bonded to 3 microm silica particles was used for the enantiomeric separation of chiral alpha-hydroxy acids. Since alpha-hydroxy acids migrate toward the anode, a cationic charge-providing agent was copolymerized with the matrix. This served to reverse the direction of the electroosmatic flow (EOF).  相似文献   

13.
To improve the chiral recognition capability of a cinchona alkaloid crown ether chiral stationary phase, the crown ether moiety was modified by the chiral group of (1S, 2S)‐2‐aminocyclohexyl phenylcarbamate. Both quinine and quinidine‐based stationary phases were evaluated by chiral acids, chiral primary amines and amino acids. The quinine/quinidine and crown ether provided ion‐exchange sites and complex interaction site for carboxyl group and primary amine group in amino acids, respectively, which were necessary for the chiral discrimination of amino acid enantiomers. The introduction of the chiral group greatly improved the chiral recognition for chiral primary amines. The structure of crown ether moiety was proved to play a dominant role in the chiral recognitions for chiral primary amines and amino acids.  相似文献   

14.
甲壳型液晶高分子的研究是我国独创[1 ,2 ] ,已产生了积极的科学影响 .虽然它们在化学结构上属于侧链型 ,但在分子形态上更接近于主链型液晶高分子[3] .由于庞大的液晶基元对空间的要求 ,液晶高分子主链被迫采取尽可能伸展的构象[4,5] .然而 ,至今尚不清楚主链与液晶基元之间是怎样协同作用以形成有序结构 .本文探索了在不同手性化合物环境下制备单手螺旋链甲壳型液晶高分子的可能性 .尽管最后并未获得螺旋链高分子 ,但仍取得了一些有价值的结果 .手性化合物环境分别是 ( )薄荷醇 ( 1 )作为反应溶剂、( )过氧化 二 (碳酸薄荷醇酯 ( 2 )作…  相似文献   

15.
Concepts leading to single enantiomers of chiral molecules are of crucial importance for many applications, including pharmacology and biotechnology. Recently, mesoporous metal phases encoded with chiral information have been developed. Fine‐tuning of the enantioaffinity of such structures by imposing an electric potential is proposed, which can influence the electrostatic interactions between the chiral metal and the target enantiomer. This allows the binding affinity between the chiral metal and the target enantiomer to be increased, and thus, the discrimination between two enantiomers to be improved. The concept is illustrated by generating chiral encoded metals in a microfluidic channel by reduction of a platinum salt in the presence of a liquid crystal and l ‐tryptophan as a chiral model template. After removal of the template molecules, the modified microchannel retains a pronounced chiral character. The chiral recognition efficiency of the microchannel can be fine‐tuned by applying a suitable potential to the metal phase. This enables the separation of both components of a racemate flowing through the channel. The approach constitutes a promising and complementary strategy in the frame of chiral discrimination technologies.  相似文献   

16.
刘金果  殷凤  胡君  巨勇 《有机化学》2021,(3):1031-1052
超分子手性组装体通常由多种非共价相互作用协同驱动形成,是一类具有独特手性限域微环境的软物质,对材料工程、生命科学、光学器件、催化合成等领域的发展具有重要作用.其主要构建方法分为三种:手性基元组装、手性因素诱导非手性基元组装、非手性基元对称性破缺组装.通过分析近年来的研究成果,归纳了利用这三种方法构建超分子手性组装体的一般策略,并简要综述了超分子手性组装体在手性模板、手性识别、圆偏振发光及不对称催化领域中的应用进展与亟需弥补的缺陷.随着研究的深入,手性传递机制将得到进一步解释,未来将有助于人们理解生命体内的手性现象,有望最终解答自然界中的手性起源问题.  相似文献   

17.
Cellulose and amylose phenylcarbamates having one or two alkoxy groups on a phenyl ring were synthesized, and their chiral recognition abilities as chiral stationary phases for HPLC were evaluated. Compared to the 4-methoxyphenylcarbamates of cellulose and amylose, which are known to show a poor chiral recognition, the 3-methoxyphenylcarbamates exhibited much higher chiral recognitions. For cellulose derivatives, as the bulkiness of the 3-alkoxy group increased, the chiral recognition ability increased. On the other hand, for the amylose derivatives, a clear relation between the chiral recognition and the bulkiness of the alkoxy group was not observed, and the 3-methoxy, ethoxy, and isopropoxyphenylcarbamates showed relatively high chiral recognitions. The introduction of two methoxy groups to the meta-positions decreased the chiral recognition ability. In order to discuss the relationship between the structure and chiral recognition ability of the alkoxyphenylcarbamates, their molecular models were constructed.  相似文献   

18.
Optimization of enantioselectivity in heterogeneous catalysis and chiral chromatography is a challenging task for the production of enantiopure chemicals. Enantioselective adsorbents usually consist of a surface with chiral receptors being either chiral molecules linked to the surface or chiral pockets formed by molecular templating of the surface. In both cases, the enantioselectivity is controlled mainly by the strength of the receptor-enantiomer interaction, such that one-to-one correspondence is usually preserved. The authors use Monte Carlo calculations to show that this steric requirement is not a necessary condition for the effective separation of chiral molecules. In particular, they propose a way in which a chiral surface can be constructed by a suitable spatial distribution of active sites for which the classical concept of a chiral receptor is no longer useful. Their calculations indicate that the effectiveness of the separation is affected mainly by the difference in shape of the adsorption energy distribution functions corresponding to the enantiomers.  相似文献   

19.
We have reviewed our previous work regarding induction or control of a peptide helix sense through chiral stimulus to the peptide chain terminus. An optically inactive 3(10)-helix designed mainly with unusual alpha-amino acid residues was commonly employed. Such an N-terminal-free peptide generates a preferred helix sense by chiral acid molecule. A helix sense pre-directed in chiral sequence is also influenced or controlled by the chiral sign of such external molecule. Here free amide groups in the 3(10)-helical N-terminus participate in the formation of a multipoint coordinated complex. The terminal asymmetry produces the noncovalent chiral domino effect (NCDE) to influence the whole helix sense. The NCDE-mediated control of helicity provides the underlying chiral nature of protein-mimicking helical backbones: notably, chiral recognition at the terminus and modulation of helical propensity through chiral stimulus. The above items from our previous reports have been outlined and reviewed together with their significance in biopolymer science and chiral chemistry.  相似文献   

20.
Chirality is a unique phenomenon in nature. Chiral interactions play an important role in biological and physiological processes, which provides much inspiration for scientists to develop chiral materials. As a breakthrough from traditional materials, biointerface materials based on chiral polymers have attracted increasing interest over the past few years. Such materials elegantly combine the advantages of chiral surfaces and traditional polymers, and provide a novel solution not only for the investigation of chiral interaction mechanisms but also for the design of biomaterials with diverse applications, such as in tissue engineering and biocompatible materials, bioregulation, chiral separation and chiral sensors. Herein, we summarize recent advances in the study of chiral effects and applications of chiral polymer-based biointerface materials, and also present some challenges and perspectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号