首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The reactivity of the organic-substituted arsanylborane tBuAsHBH2NMe3 ( 1 ) towards different elemental chalcogenes as well as organic oxidants such as O-NMe3, Me3Si−O−O-SiMe3, MesCNO and cyclohexenesulfide is reported. By the reaction of 1 with grey selenium, the selenium oxidation product tBuAs(Se)HBH2NMe3 ( 2 ) was obtained. For the oxidation with sulfur, the two products tBuAs(S)HBH2NMe3 ( 3 a ) and tBuAs(S)SHBH2NMe3 ( 3 b ) could be isolated as oils. The structural characterization of As(tBuAs(S)SHBH2NMe3)3 ( 4 ) as well as corresponding DFT computations allow insights into the decomposition behavior of 3 a and 3 b in solution. For the reaction of MesCNO with 1 , the formation of an unusual As−H activation product Mes-C(NOH)-AstBu-BH2NMe3 ( 5 ) is observed. In the reaction with Me3N−O, the first isolatable oxo-arsanylboranes tBuAs(O)HBH2NMe3 ( 6 a ) and tBuAs(O)OHBH2NMe3 ( 6 b ) are obtained, with 6 b also being accessible via the controlled reaction of 1 with air.  相似文献   

2.
Sodium4-hydroxy-3-([2-picolinoylhydrazineylidene]methyl)benzenesulfonate (NaH2PH) was synthesized as a novel water-soluble ligand, by the condensation of picolinohydrazide with sodium 3-formyl-4-hydroxybenzenesulfonate. The (NaH2PH) ligand and its isolated Co (II), Fe (III), Hg (II), and Pd (II) complexes were analyzed by elemental analysis and characterized by spectroscopic (Fourier transform infrared spectroscopy, UV–visible, powder XRD, 1H NMR,13C NMR, MS) and magnetic measurements. By comparing IR spectra of both ligand and the metal complexes, one can assume that the (NaH2PH) ligand behaves as a bi-negative tetradentate (ONNO) in [Co (NaPH)(H2O)2].3H2O, and a mono-negative tridentate (ONO) in [Fe (NaPH)Cl2(H2O)] complex, whereas in [Hg2(NaPH)Cl2(H2O)] complex, (NaH2PH) coordinates as a bi-negative pentadentate (ONNNO) ligand via deprotonated OH group of phenolic ring (C=N)Py and (C=N*) coordinated to one of Hg (II) ion and the oxygen atom of enolic group and (C=N)az group with the another Hg (II) ion. Moreover, (NaH2PH) acts as bi-negative tridentate (ONO) ligand in [Pd (NaPH)(H2O)].2H2O complex. The geometries of complexes were suggested based on the UV–visible spectra, magnetic measurements and confirmed by applying discrete Fourier transform (DFT) optimization studies. The thermal fragmentation of both [Pd (NaPH)(H2O)].2H2O and [Co (NaPH)(H2O)2].3H2O complexes was performed, and the kinetic and thermodynamic parameters were computed using the Coats–Redfern and Horowitz–Metzger methods. The redox behavior of divalent ions of cobalt and mercury were discussed by the cyclic voltammetry technique in the presence and absence of (NaH2PH) ligand. Biological potencies of the ligand and its metal complexes were evaluated as antioxidants (ABTS and DPPH), anticancer, DNA, and antimicrobial (Staphylococcus aureus and Bacillus subtilis as Gram (+) bacteria, Escherichia coli and Pseudomonas aeruginosa as Gram (−) bacteria, and Candida albicans as fungi).  相似文献   

3.
A series of efficient ruthenium chloride (RuCl_3)-anchored MOF catalysts,such as RuCl_3@MIL-101 (Cr)-Sal,and RuCl_3@MIL-101 (Cr)-DPPB, have been successfully synthesized by post-synthetic modification (PSM)of the terminal amino of MIL-101(Cr)-NH_2 with salicylaldehyde, 2-diphenylphosphinobenzaldehyde (DPPBde) and anchoring of Ru (Ⅲ) ions. The stronger coordination electron donor interaction between Ru (Ⅲ) ions and chelating groups in the RuCl_3@MIL-101 (Cr)-DPPB enhances its catalytic performance for CO_2 hydrogenation to formic acid. The turnover number (TON) of formic acid was up to 831 in reaction time of 2 h with dimethyl sulfoxide (DMSO) and water (H_2O) as mixed solvent, trimethylamine (Et_3N) as organic base, and PPh_3 as electronic additive.  相似文献   

4.
Contributions to the Chemistry of Phosphorus. 237. On the Reaction of Diphosphane(4) with Peroxo Compounds: Formation of Phosphinophosphinic Acid, H2PPH(O)OH, and Bis(phosphino)phosphinic Acid, (H2P)2P(O)OH Diphosphane(4) reacts with peroxo compounds such as hydrogen peroxide, tetraline hydroperoxide, trifluoroperoxyacetic acid, and cumene hydroperoxide (which is particularly suited for preparative work) at ?30°C to furnish phosphino-phosphinic acid, H2PPH(O)OH ( 1 ), as the primary product. Compound 1 disproportionates to a major extent in statu nascendi to give phosphanes (above all PH3) and monophosphorus acids of various oxidation states as well as some bis(phosphino)phosphinic acid, (H2P)2P(O)OH ( 2 ). The acids 1 and 2 can be trapped and stabilized as their triethylammonium salts. The structures of these salts have been determined by spectroscopic investigations.  相似文献   

5.
The bis(anilino)phosphine oxide (PhNH)2P(O)H as a ligand reacts directly with zirconocene dichloride CP2ZrCl2 to afford H(PhNH)P[(NPh)OZr(Cp)2Cl] (1), while in the presence of triethylamine as a base the ligand is deprotonated and H(O)P[(NPh)2Zr(Cp)2] (2) is isolated in a very good yield. When the ligand is treated with TiCl4, however, the diligand complex Cl3TiO(NPh)PH(NPh)PHO(Nph)TiCl3 (3) is separated in high yield. These new compounds have been fully characterized by FT-IR, UV–Vis spectrophotometry and multi-nuclear (1H, 31P) NMR spectroscopy and elemental analysis as well as XRF analysis of SEM images.  相似文献   

6.
A strongly hydrophobic phosphonium ionic liquid, trihexyltet radecylphosphonium bis(trifluoromethanesulfonyl)imide ([P66614][NTf2]) was employed as the diluent for the extraction behavior of Am(III) using N,N-dihexyl-2-hydroxyacetamide(DHHy) as extractant. The extractibility of americium(III) in [P66614][NTf2] phase was measured as a function of various parameters such as aqueous phase acidity (0.1–8 M), extractant concentration (0.01–0.15 M), equilibration time (5–120 min) and temperature (298–333 K). The extraction performance observed in DHHy/[P66614][NTf2] was compared with those observed in N,N-dihexyloctamide (DHOA) in [P66614][NTf2] and DHHy in other diluents such as [C4mim][NTf2] and n-dodecane. The effect of temperature on D Am(III) in ionic liquid system and recovery of Am(III) from the loaded phase were ascertained in detail.  相似文献   

7.
The chemistry of coinage metal bis(triflyl)imides of technological interest, CuNTf2 and AgNTf2, their synthesis and complexes with excess of comparatively weakly coordinating NTf2? as well as with ether, olefins, and the arene mesitylene are described. The existence of the solvent‐free pure phase [CuNTf2] has not been evidenced so far. Contrary to the literature, in which the preparation of [CuNTf2] is supposed to be carried out by reacting mesityl copper, [Cu(Mes)]5, and HNTf2, we found that in fact this reaction leads reproducibly to the interesting copper diarene sandwich complex [Cu(η3‐MesH)2][Cu(NTf2)2] ( 1 ) (MesH=1,3,5‐trimethylbenzene). The unexpectedly stable molecular etherate [Cu(Et2O)(NTf2)] ( 2 ) turned out to be the best precursor for CuNTf2 having only an inert and easily exchangeable solvent ligand. The coordination mode of NTf2? in 1 and 2 as well as in the hitherto unknown crystalline phase of [AgNTf2] ( 3 ) is described. The complex formation, which takes place when dissolving 2 or 3 in the room temperature ionic liquid (RTIL) [emim]NTf2 ([emim]+=1‐ethyl‐3‐methylimidazolium), has been studied. Furthermore, the reaction of 1 – 3 towards the diolefins 1,5‐cyclooctadiene (COD), 2,5‐norbornadiene (NBD) and isoprene (2‐methylbuta‐1,3‐diene) and towards ethylene has been investigated. The products 4 – 13 of these conversions have been isolated and fully characterized by NMR‐ and IR spectroscopies, mass spectrometry, and elemental‐ and XRD analyses. The potential of [Cu(η3‐MesH)2][Cu(NTf2)2] ( 1 ), [Cu(Et2O)(NTf2)] ( 2 ) and [AgNTf2] ( 3 ) as well as of [emim][M(NTf2)2] (M=Cu 4 , Ag 5 ) as chemisorbers for ethylene was studied by NMR spectroscopy.  相似文献   

8.
On 2-(Dimethylaminomethyl)ferrocenyl Compounds of Vanadium, Niobium, and Tantalum Former results, indicating the ability of (dimethylaminomethyl)ferrocenyl groups forming stable σ-organo transition-metal derivatives, were proved by the synthesis of heterobimetallic 2-(dimethylaminomethyl)ferrocenyl compounds of the three-valued vanadium as well as five valued niobium and tantalum from VCl3, NbCl5, TaCl5, and (FcN)Li ( I ). The synthesis and properties of the compounds (FcN)2VCl ( II ), (FcN)nNbCl5–n(THF)x [n = 1, x = 1,3 ( III ); n = 2, x = 0 ( IV ); n = 3, x = 0 ( V )] as well as (FcN)TaCl4(THF)1.5 ( VI ) are reported. An intensive characterization, especially in respect of possible chelate structures was tried by i.r., 1H-n.m.r., uv-vis, mass spectroscopy, and elementary analysis.  相似文献   

9.
Abstract

The ligand, 2-furan carboxaldoxime exists in two geometrical isomeric forms: anti-(β-form) and syn-(α-form). Six different complexes of Co(II), Cu(II), Cu(I) and Ag(I) with anti-2-furan carboxaldoxime (FDH) have been prepared and characterized by elemental analysis, molecular weights, conductance studies, magnetic moments and infra-red spectral studies. These are [Co(FDH)4Cl2], [Co(FD)2], [Cu(CH3COO)2 (FDH)]2, [Cu(FD)(OH)]2, Cu(FDH)2 Cl and AgNO3·2FDH. Under the similar conditions, syn- form does not form any complex with these metal ions. The complexes [Co(FDH)4Cl2] and [Co(FD)2] are neutral, monomeric and para-magnetic (μ=4.88 and 4.52 BM respectively); the former may be considered as octahedral with FDH acting as monodentate, and the latter as tetrahedral with FD? as a bidentate ligand. Both the Cu(II) complexes are neutral, dimeric, weakly para-magnetic (μ=0.44 and 0.28 BM respectively) with the bridging acetato groups in [Cu(CH3 COO)2 (FDH)]2 and with bridging hydroxo groups in [Cu(FD)(OH)]2. The Cu(I) complex may be polymeric, being insoluble in most solvents. The Ag(I) compound is cationic 1:1 electrolyte in nitrobenzene. In all these complexes the ligand functions as monodentate and/or bidentate, coordinating with furan oxygen and oxime oxygen in the latter case. The C[sbnd]O[sbnd]C stretching frequency of furan may be taken as the criterion for the denticity of this ligand which is observed at 1240 cm?1 (in the free ligand). A shift to lower frequency is observed in the complex if the ligand acts as bidentate. However this frequency is not affected if the ligand acts as monodentate coordinating through the oxime oxygen atom. The ligand has been shown to be present in the ionized and/or unionized form in these complexes.  相似文献   

10.
Imidazole(Im), benzimidazole(BzIm), morpholine (Morph) and their derivatives react with Co(CNS)2 and dimethylglyoxime(DH2) in ethanolic medium in presence of air to form a number of new cobalt(III) complexes of the type trans-[Co(DH)2(L)(SCN)], which are characterised on the basis of electronic and IR spectra, NMR (1H and 13C) and mass spectra as well as thermogravimetric (TG-DTA) and conductance measurements. The thiocyanate groups are S-bonded. The NMR observations suggest that in solution these compounds exist as mixtures of the neutral species [Co(DH)2(L)(SCN)] and the salt [Co(DH)2(SCN)2]? [Co(DH)2(L)2]+. The mass spectra does not show the molecular ion peak of the complex. The TG-DTA measurements show that the thermolysis of these complexes proceeds through polymeric intermediates giving CO3O4 as the end product.  相似文献   

11.
Six heteroatomic complexes of diphenylphosphine derivatives with heavy metals (Ni, Pd, Pt, Mo and W) were prepared and subjected to elemental spectral and thermal analyses. The different physicochemical methods used indicated the formulae [NiCl2(dppm)], [PtCl2(dppm)] and [Mo(CO)4(dppm)] (dppm=bis(diphenylphosphine)methane, the dppm in these complexes behaving as a bidentate ligand), [Pd(CN)2(dppm)2] (in which the dppm behaves as a monodentate ligand), [W(CO)4(dppe)2] and [Mo(CO)4(dppe)2] (dppe=1,1-bis(diphenylphosphine)ethene, the dppe in these complexes behaving as a bidentate ligand). The thermal analyses (DTA and TG) confirmed these structures. The results of spectral and thermal analyses were compared. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
A wide range of potential ligand precursors and related compounds have been synthesized from ferrocenyldibromoborane and ferrocenylenebis(dibromoborane) via salt elimination reactions. These comprise ligand precursors suitable for the preparation of (i) ansa‐metallocenes such as [FcB(η1‐C5H5)2] ( 2 ), [FcB(1‐C9H7)2] ( 3 ), [FcB(3‐C9H7)2] ( 4 ) and [1,1′‐fc{B(3‐C9H7)2}2] ( 11 ), (ii) constrained geometry complexes such as [FcB(1‐C9H7)N(H)Ph] ( 7 ) and [FcB(3‐C9H7)N(H)Ph] ( 8 ), (iii) ansa‐diamido complexes such as [FcB(N(H)Ph)2] ( 9 ) as well as (iv) the related compounds [FcB(Br)N(H)tBu] ( 5 ), [FcB(Br)N(H)Ph] ( 6 ), [1,1′‐fc{B(Br)N(SiMe3)2}2] ( 12 ) and [1,1′‐fc{B(Br)NiPr2}2] ( 13 ) (Fc = ferrocenyl, fc = ferrocenylene, C5H5 = cyclopentadienyl, C9H7 = indenyl). All new compounds have been characterised by multinuclear NMR spectroscopic techniques and in the case of 7 and 12 by X‐ray diffraction methods.  相似文献   

13.
Complexes of syn-thiophene-2-aldoxime (TDH) have been synthesised and characterized on the basis of elemental analysis, molecular weight, conductance, magnetic susceptibility and i. r. spectra. These are [Co(TDH)4Cl2], [Co(TD)2], [Ni(TDH)4Cl2], [Ni(TD)2(TDH)], [Cu(CH3COO)2(TDH)]2, [Cu(TD)(OH)]2 and AgNO3 · 2TDH. In these complexes the ligand (TDH) functions as monodentate (coordinating through nitrogen atom) or bidentate (coordinating through the nitrogen and sulphur atoms). The C? S stretching frequency (of the thiophene ring) at 718 cm?1 may be taken as the criteria for the denticity of this ligand. A shift to lower frequency is observed in the complex if the ligand acts as a bidentate. However, this band is not affected if the ligand acts as monodentate.  相似文献   

14.
A pair of novel thiocyanate‐bridged polynuclear copper(II) complexes, [Cu2(BCP)2(NCS)2]n ( 1 ) and [Cu2(BCP)2(MeOH)(NCS)2]2 ( 2 ) [BCP = 4‐bromo‐2‐(cyclopropyliminomethyl)phenolate], have been obtained from an identical synthetic procedure and starting materials using solvents as the only independent variable. Complex 1 was synthesized and crystallized using EtOH as the solvent, while complex 2 was synthesized and crystallized using MeOH as the solvent. Both complexes show novel self‐assembled supramolecular structures in their crystals as elucidated by X‐ray analyses. The polymeric dinuclear complex 1 contains [Cu2(BCP)2(NCS)2] units as the building blocks, crystallizes in the Pbca space group. The monomeric tetranuclear complex 2 contains [Cu2(BCP)2(MeOH)(NCS)2] units as the building blocks, crystallizes in the P21/n space group.  相似文献   

15.
Abstract— Kinetic studies were made of light production and 02 absorption elicited by treatment of dimethylbiacridylium hydroxide [D(OH)2] with reducing agents in alkaline aqueous solutions. D(OH)2 addition stimulated O2 uptake which proceeded with zero-order kinetics until nearly all of the O2 or of the D(OH)2 was converted to end products. At the termination of the reactions with fructose as reductant the D(OH)2 was converted to methylacridone and to dimethylbiacridene each compound accounting for approximately one-half the D(OH)2 consumed. O2 was reduced to H2O2. With hydroxylamine as the reducing agent the emitted light intensity was related to the first power of the D(OH)2 concentration and the rate of O2 uptake to the square root of the D(OH)2. The disappearance of D(OH)2 in these circumstances was by a first order or pseudo-first order rate. Fructose as a reducing agent by contrast resulted in an O2 uptake nearly independent of D(OH)2 concentration over a range from 1 × 10-5M-1 × 10-4M, while the light intensity and disappearance of D(OH)2 followed a one-half order rate. O2 uptake was by zero order kinetics and the oxidation of fructose proceeded at the same rate as was found with ferricyanide as oxidant. The kinetics, quantum yields and temperature dependence of the fructose reactions were compared with similar reactions employing H2O2 as the light eliciting reagent. The results are interpreted as indicating that D(OH)2 acts as a chain initiator in a manner analogous to better known, radical producing compounds found to accelerate hydrocarbon autooxidations.  相似文献   

16.
This article aims to shed some light on the structure and thermo-physical properties of lithium disilicate glasses in the system Li2O–SiO2–Al2O3–K2O. A glass with nominal composition 23Li2O–77SiO2 (mol%) (labelled as L23S77) and glasses containing Al2O3 and K2O with SiO2/Li2O molar ratios (3.13–4.88) were produced by conventional melt-quenching technique in bulk and frit forms. The glass-ceramics (GCs) were obtained from nucleation and crystallisation of monolithic bulk glasses as well as via sintering and crystallisation of glass powder compacts. The structure of glasses as investigated by magic angle spinning-nuclear magnetic resonance (MAS-NMR) depict the role of Al2O3 as glass network former with four-fold coordination, i.e., Al(IV) species while silicon exists predominantly as a mixture of Q 3 and Q 4 (Si) structural units. The qualitative as well as quantitative crystalline phase evolution in glasses was followed by differential thermal analysis (DTA), X-ray diffraction (XRD) adjoined with Rietveld-reference intensity ratio (R.I.R.) method, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The possible correlation amongst structural features of glasses, phase composition and thermo-physical properties of GCs has been discussed.  相似文献   

17.
Seven three dimensional (3D) uranyl organic frameworks (UOFs), formulated as [NH4][(UO2)3(HTTDS)(H2O)] ( 1 ), [(UO2)4(HTTDS)2](HIM)6 ( 2 , IM=imidazole), [(UO2)4(TTDS)(H2O)2(Phen)2] ( 3 , Phen=1,10-phenanthroline), [Zn(H2O)4]0.5[(UO2)3(HTTDS)(H2O)4] ( 4 ), and {(UO2)2[Zn(H2O)3]2(TTDS)} ( 5 ), {Zn(UO2)2(H2O)(Dib)0.5(HDib)(HTTDS)} ( 6 , Dib=1,4-di(1H-imidazol-1-yl)benzene) and [Na]{(UO2)4[Cu3(u3-OH)(H2O)7](TTDS)2} ( 7 ) have been hydrothermally prepared using a rigid octadentate carboxylate ligand, tetrakis(3,5-dicarboxyphenyl)silicon(H8TTDS). These UOFs have different 3D self-assembled structures as a function of co-ligands, structure-directing agents and transition metals. The structure of 1 has an infinite ribbon formed by the UO7 pentagonal bipyramid bridged by carboxylate groups. With further introduction of auxiliary N-donor ligands, different structure of 2 and 3 are formed, in 2 the imidazole serves as space filler, while in 3 the Phen are bound to [UO2]2+ units as co-ligands. The second metal centers were introduced in the syntheses of 4–7 , and in all cases, they are part of the final structures, either as a counterion ( 4 ) or as a component of framework ( 5 − 7 ). Interesting, in 7 , a rare polyoxometalate [Cu33-OH)O7(O2CR)4] cluster was found in the structure. It acts as an inorganic building unit together with the dimer [(UO2)2(O2CR)4] unit. Those uranyl carboxylates were sufficiently determined by single crystal X-ray diffraction, and their topological structures and luminescence properties were analyzed in detail.  相似文献   

18.
Block copolymers of poly(N-t-butylbenzoyl ethylenimine) and poly(N-propionyl ethylenimine) (Bx/Ey and Bx/Ey/Bx) or poly (N-lauroyl ethylenimine) and poly (N-propionyl ethylenimine) (Ux/Ey) were synthesized by cationic ring-opening polymerization of 2-substituted δ2-oxazolines. Inverse emulsions (salt-in-oil) were made using these block copolymers as emulsifiers, hydroxy-terminated polybutadiene (HTPB) as the nonpolar phase and methyl ammonium ethane sulfonate (MAES) as the polar phase. These inverse emulsions (S/O) were then cured using a triisocyanate to give a dispersion of molten salt (MAES) droplets in polyurethane. Pore sizes of these cured inverse emulsions were measured from scanning electron photomicrographs as a function of stirring time and concentrations of block copolymer and molten salt. The results indicate that pores with diameters in the range of 1.5 X 10?6 m can be obtained using triblock copolymer Bx/Ey/Bx, and that the surfactant molecules can be spread as a monolayer at the MAES-HTPB interface.  相似文献   

19.
Homo and heterobinuclear complexes of arylidene- anthranilic acids with Cu(II), Ni(II) and Co(II) are prepared and characterised by chemical analysis, spectral and X-ray diffraction techniques as well as conductivity measurements. Two types of homo-binuclear complexes are formed. The first has the formula M2L2Cl2(H2O)n where M=Cu(II), Ni(II) and Co(II), L = p-hydroxybenzylideneanthranilic acid (hba), p-dimethylaminobenzylideneanthranilic acid (daba) and p-nitrobenzylideneanthranilic acid(nba) and n = 0–3. The second type has the formula M2LCl3(H2O)n in which M is the same as in the first type, L = benzylideneanthranilic acid (ba), (daba) (in cases of Cu(II) and Ni(II)); and n = 1–5. Heterobinuclear complexes having the formula (MLCl2H2O) MCl2(H2O)n are isolated by reaction of Cu(II) binary chelates with Ni(II) and/or Co(II) chlorides. These are also characterized and their structures are elucidated.  相似文献   

20.
When copper(II) acetate is treated with the ionic liquid n‐butylmethylimidazolium cyanide (BMIm‐CN), in ethanol solution, two new copper coordination compounds are obtained. (BMIm)2[Cu4(CN)7] comprises a 3D coordination polymer of cyanide bridged copper ions. This anionic coordination polymer contains CuI as well as CuII ions, i.e. it is a mixed‐valent compound. The polymer can be described as honeycomb structure with the BMIm+ cation being located in the cages. The second compound obtained from the chemical reaction is (BMIm)[Cu2(OAc)5][Cu(OAc)2(H2O)]2 · C2H5OH, which can be described as double‐salt. The first unit (BMIm)[Cu2(OAc)5] contains paddle wheel copper(II) acetato moieties, which are bridged by additional acetato ligands and form infinite chains. The second part of the double salt is the neutral, [Cu(OAc)2(H2O)]2 complex. These two parts as well as the co‐crystallized ethanol molecule are connected through a network of hydrogen bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号