首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
为了获得更多的多肽结构信息,采用结构简单的甘氨酸五肽(简写为GGGGG或G5)作为模型,研究了碱金属离子(Li+、Na+、K+、Rb+)对甘氨酸五肽GGGGG气相解离过程的影响.将一定化学计量比的甘氨酸五肽分别和四种碱金属盐溶液混合后,静置10h,使反应达到平衡.电喷雾质谱结果表明,四种碱金属离子均可以在溶液中与甘氨酸五肽形成非共价复合物,其中主要组分为碱金属离子与G5配合比为1:1和2:1的非共价复合物.质谱碰撞诱导解离(CID)时的碰撞能量为25eV.气相碰撞诱导解离实验结果表明,在配合比为1:1的复合物中,其碎片化程度按照Li+、Na+、K+、Rb+的次序依次减小,Rb+的复合物碎裂过程中生成了不常见的c、z离子;在配合比为2:1的复合物中,其碎片化程度按照Li+、Na+、K+、Rb+的次序依次增大.与1:1的非共价复合物相比,Na+、K+、Rb+的2:1复合物的气相解离显得更加容易.除Li+外,两个碱金属离子对G5的活化能力明显较单个碱金属离子强,它们可以诱导多肽在更多位点断裂,生成更多类型的碎片离子.  相似文献   

2.
杜甫佑  白玉  白玉  刘虎威 《分析化学》2011,39(8):1147-1152
采用液相色谱-四级杆飞行时间质谱(LC-QTOF-MS)联用技术,研究了系统素及其相似多肽的质谱裂解机理和色谱保留规律,探讨了它们的碰撞诱导解离规律.结果表明,系统素准分子离子一般带有2-5个电荷;在低碰撞能条件下,多肽母离子发生碰撞诱导解离,产生b型和Y型碎片离子;烟草系统素I最强母离子[M+3H]3+的最优碰撞能为...  相似文献   

3.
应用碰撞诱导解离(CID)技术研究了电子轰击方法产生的脂肪胺分子离子和化学电离方法产生的质子化脂肪胺分子的碎裂反应。质子化脂肪胺碰撞活化后的主要碎裂通道包括丢失C~XH~2~X、C~XH~2~X~+~1、C~XH~2~X~+~2单元及NH~3和生成[C~yH~2~y~+~1]^+及CH~3CH=NH~2^+离子。脂肪胺分子离子碰撞活化后的主要碎裂通道是丢失C~XH~2~X、C~XH~2~X~+~1及NH~3和生成[C~mH~2~m~-~1]^+、CH~2NH~2^+及CH~3CHNH~2^+离子。随着碰撞能的增加,远电荷碎裂反应和电荷诱导碎裂反应之间竞争引起产物离子的分布发生变化,如[C~mH~2~m~-~1]^+和[C~yH~2~y~+~1]^+离子。自由基机理可以解释质子化脂肪胺分子的远电荷反应。分子内氢抽取可以解释脂肪胺分子离子的碎裂反应。  相似文献   

4.
运用低能碰撞诱导解离(CID)研究了电子轰击(EI)、快原子轰击(FAB)电离条件下质子化亮氨酸与异亮氨酸解高产生亚稳离子[MH-CO2H2]+的单分子质谱碎裂,二种异构体呈现出了各自不同的解离特征,根据CID的特征碎片离子和氘代同位素标记实验,提出了其碎裂过程存在离子/中性(碎片)复合物中间体碎裂机理,并对有关的特征离子的形成进行了讨论.  相似文献   

5.
报道了3-苯基-1-丁炔-3-醇的常规电子轰击质谱(EIMS)。利用碰撞诱导解离(CID)技术研究了质谱碎裂过程中产生的[C8H7]^+的气相离子结构。同时, 氘代同位素交换、亚稳(MI)和CID实验进一步证实了m/z 103离子的形成并不是分子离子的质谱碎裂中顺次失去甲基自由基和中性CO分子的直接氢迁移的协同反应, 而是在失去CO分子前后发生了二次质子迁移反应的逐步过程。在此基础上提出了一种独特的双分子质子键合复合物中间体的碎裂机理。  相似文献   

6.
建立了一种新的基于碰撞诱导解离(CID)碎裂模式鉴定精氨酸-腺苷二磷酸(ADP)-核糖基化多肽的新方法. 首先,在碱性条件下将精氨酸-ADP-核糖基化血管紧张素-Ⅰ转变为鸟氨酸化血管紧张素-Ⅰ,或在磷酸二酯酶和碱性磷酸酶处理下水解为精氨酸核糖基化血管紧张素-Ⅰ,然后对上述2种衍生物进行基于CID碎裂模式的串联质谱分析. 结果表明,与未衍生的精氨酸-ADP-核糖基化血管紧张素-Ⅰ相比,在鸟氨酸化血管紧张素-Ⅰ和精氨酸核糖基化血管紧张素-Ⅰ的质谱图上发现大部分来自于肽骨架碎裂的离子峰,可提供足够的序列信息以确定精氨酸-ADP-核糖基化位点.  相似文献   

7.
刘淑莹  李智立 《化学学报》1992,50(8):762-766
本文利用质量分析离子动能(MIKES)和碰撞诱导解离(CID)技术, 研究了邻、间、对二氯苯分子在电子轰击质谱(EIMS)中产生的[C6H4CI2]^2+和[C6H4CI]^2+双电荷离子的单分子电荷分离(CS)反应。根据测定和CS反应的动能释放值T和由此估算的反应过渡态的电荷间距的最小值R, 推测过渡态的结构。有趣的是, 可以利用双电荷离子[C6H4CI2]^2+的分解反应区分二氯苯的位置异构体。  相似文献   

8.
本文利用质量分析离子动能(MIKES)和碰撞诱导解离(CID)技术, 研究了邻、间、对二氯苯分子在电子轰击质谱(EIMS)中产生的[C6H4CI2]^2+和[C6H4CI]^2+双电荷离子的单分子电荷分离(CS)反应。根据测定和CS反应的动能释放值T和由此估算的反应过渡态的电荷间距的最小值R, 推测过渡态的结构。有趣的是, 可以利用双电荷离子[C6H4CI2]^2+的分解反应区分二氯苯的位置异构体。  相似文献   

9.
利用质量分析离子动能谱和碰撞诱导解离技采研究了邻、间、对二甲苯分子在电子轰击质谱中产生的双电荷离子[C8H10]2+、[C8H9]2+和单电荷离子[C8H10]+。根据测定的电荷分离反应的释放动能T和由此估算的双电荷离子电荷分离反应过渡态两电荷间距R,推测出过渡态的结构,利用单电荷离子[C8H10]+的MIKES/CID谱可区分邻二甲苯与间、对二甲苯异构体.  相似文献   

10.
李智立  刘淑莹 《化学学报》1997,55(4):393-398
本文利用质量分析离子动能谱(MIKES)、碰撞诱导解离(CID)技术和电子捕获诱导解离(ECID)技术, 研究了邻、间、对苯二酚分子在电子轰击质谱(EIMS)中产生的双电荷离子[C6H6O2]^2^+, [C6H4O]^2^+和单电荷离子[C6H6O2]^+。根据测定的电荷分离反应动能释放值T和由此计算出的两电荷间距R, 推测出过渡态的结构。有趣的是, 可利用单电荷离子[C6H6O2]^+的MIKES/CID谱区分苯二酚异构体。  相似文献   

11.
A new method has been developed to study the dissociation patterns of singly protonated peptides by using a quadrupole ion trap mass spectrometer. The new approach involves using boundary-activated dissociation to characterize the ease of dissociation of peptide ions. Insight can be gained into the effect of specific peptide sequences on the dissociation energetics of protonated peptides. Increased knowledge of the effects of specific sequences on the dissociation patterns of peptide ions should improve the ability to interpret complex spectra from tandem mass spectrometry (MS/MS) experiments. This method has confirmed the previously observed increase in the energy needed for the dissociation of peptide ions containing basic residues. In addition, this technique has revealed the effect of the location of proline residues on the dissociation energetics of peptides with this amino acid.  相似文献   

12.
Suppression of the selective cleavage at N‐terminal of proline is observed in the peptide cleavage by proteolytic enzyme trypsin and in the fragment ion mass spectra of peptides containing Arg‐Pro sequence. An insight into the fragmentation mechanism of the influence of arginine residue on the proline effect can help in prediction of mass spectra and in protein structure analysis. In this work, collision‐induced dissociation spectra of singly and doubly charged peptide AARPAA were studied by ESI MS/MS and theoretical calculation methods. The proline effect was evaluated by comparing the experimental ratio of fragments originated from cleavage of different amide bonds. The results revealed that the backbone amide bond cleavage was selected by the energy barrier height of the fragmentation pathway although the strong proton affinity of the Arg side chain affected the stereostructure of the peptide and the dissociation mechanism. The thermodynamic stability of the fragment ions played a secondary role in the abundance ratio of fragments generated via different pathways. Fragmentation studies of protonated peptide AACitPAA supported the energy‐dependent hypothesis. The results provide an explanation to the long‐term arguments between the steric conflict and the proton mobility mechanisms of proline effect.  相似文献   

13.
The energy dependence of competing fragmentation pathways of protonated peptide molecules is studied via laser desorption—chemical ionization in a Fourier transform ion cyclotron resonance spectrometer. Neutral peptide molecules are desorbed by the technique of substrate-assisted laser desorption, followed by post-ionization with a proton transfer reagent ion species. The chemical ionization reaction activates the protonated peptide molecules, which then fragment in accordance with the amount of excess energy that is deposited. Chemical ionization forms a protonated molecule with a narrower distribution of activation energy than can be formed by activation methods such as collision activated dissociation. Furthermore, the upper limit of the activation energy is well defined and is approximately given by the enthalpy of the chemical ionization reaction. Control over the fragmentation of peptide ions is demonstrated through reactions between desorbed peptide molecules with different reagent ion species. The fragmentation behavior of peptide ions with different internal energies is established by generation of a breakdown curve for the peptide under investigation. Breakdown curves are reported for the peptides Val-Pro, Val-Pro-Leu, Phe-Phe-Gly-Leu-Met NH2, and Arg-Lys-Asp-Val-Tyr. The derived breakdown curve of Val-Pro has been fitted by using quasi-equilibrium Rice-Ramsperger-Kassel-Marcus theory to model the unimolecular dissociation of the protonated peptide to provide a better understanding of the mechanisms for the formation of fragment ions that originate from protonated peptides.  相似文献   

14.
A unique collision-induced dissociation pattern was observed for protonated polyproline peptides of length n in which y(n-2) and/or y(n-4) ions were formed in much higher abundance than any other product ions. Cleavage occurs only at every other amide bond, such that product ions are formed only from the losses of even numbers of proline residues. Exclusive losses of even numbers of proline residues were not observed from sodiated peptides. Further study of the tandem mass spectrometry (MS/MS) patterns of protonated proline-rich peptides showed that the substitution of alanine in the second position of polyproline peptides did not prevent the dominant formation of y(n-2) and y(n-4) ions. The loss of ProAla to form the y(8) ion from (ProAlaPro(8)NH(2)+H)(+) was as abundant as the loss of ProPro from (Pro(10)NH(2)+H)(+). However, modification of the peptides that presumably affected the location of the proton on the peptide did alter the MS/MS spectra. Pro(10) and Pro(5) with blocked N-termini or with arginine substituted for the first proline residue did not form abundant y(n-2) or y(n-4) ions. MS(3) and double resonance experiments showed that dissociation of intermediate y(n) product ions can produce y(n-2) ions, but are not necessary dissociation pathway intermediates. This analysis suggests that the ionizing proton must be located at the N-terminus for the peptide ion to dissociate in this manner.  相似文献   

15.
A relatively simple model for calculation of the energetics of gas-phase proton transfer reactions and the maximum charge state of multiply protonated ions formed by electrospray ionization is presented. This model is based on estimates of the intrinsic proton transfer reactivity of sites of protonation and point charge Coulomb interactions. From this model, apparent gas-phase basicities (GBapp) of multiply protonated ions are calculated. Comparison of this value to the gas-phase basicity of the solvent from which an ion is formed enables a maximum charge state to be calculated. For 13 commonly electrosprayed proteins, our calculated maximum charge states are within an average of 6% of the experimental values reported in the literature. This indicates that the maximum charge state for proteins is determined by their gas-phase reactivity. Similar results are observed for peptides with many basic residues. For peptides with few basic residues, we find that the maximum charge state is better correlated to the charge state in solution. For low charge state ions, we find that the most basic sites Arg, Lys, and His are preferentially protonated. A significant fraction of the less basic residues Pro, Trp, and Gln are protonated in high charge state ions. The calculated GBapp of individual protonation sites varies dramatically in the high charge state ions. From these values, we calculate a reduced cross section for proton transfer reactivity that is significantly lower than the Langevin collision frequency when the GBapp of the ion is approximately equal to the GB of the neutral base.  相似文献   

16.
The dissociation of singly or multiply protonated peptide ions by using low-energy collisional activation (CA) is highly dependent on the sites of protonation. The presence of strongly basic amino acid residues in the peptide primary structure dictates the sites of protonation, which generates a precursor ion population that is largely homogeneous with respect to charge sites. Attempts to dissociate this type of precursor ion population by low-energy CA result in poor fragmentation via few pathways. The work described here represents a systematic investigation of the effects of charge heterogeneity in the precursor ion population of a series of model peptides in low-energy CA experiments. Incorporation of acidic residues in the peptide RLC*IFSC*FR (where C* indicates a cysteic acid residue), for example, balances the charge on the basic arginine residues, which enables the ionizing protons to reside on a number of less basic sites along the peptide backbone. This results in a precursor ion population that is heterogeneous with respect to charge site. Low-energy CA of these ions results in diverse and efficient fragmentation. Molecular modeling has been utilized to demonstrate that energetically preferred conformations incorporate an intraionic interaction between arginine and cysteic acid residues.  相似文献   

17.
Ion/ion charge inversion via multiple proton transfer reactions occurs via a long-lived intermediate. The intermediate can be observed if its lifetime is long relative to mechanisms for removal of excess energy (i.e., emission and collisional stabilization). The likelihood for formation of a stabilized intermediate is a function of characteristics of the reagent and analyte ions. This work is focused on the role acidic and basic sites of a deprotonated peptide play in the formation of a stabilized intermediate upon charge inversion with multiply protonated polypropyleniminediaminobutane dendrimers. A group of model peptides based on leucine enkephalin was used, which included YGGFL, YGGFLF, YGGFLK, YGGFLR and YGGFLH as well as methyl esterified and acetylated versions. Results showed that peptides containing basic amino acid residues charge inverted primarily by proton transfer from the DAB dendrimer to the peptide, whereas peptides without basic amino acids charge inverted primarily by complex formation with the DAB dendrimer. The modified versions of the peptides highlighted the importance of the presence of the C-terminus as well as the basicity of the peptide in the observation of a stabilized intermediate. These results provide new insights into the nature of the interactions that occur in the charge inversion of polypeptide anions via ion/ion reactions.  相似文献   

18.
The stability and structure of non-covalent complexes of various peptides contatining basic amino acid residues (Arg, Lys) with metalloporphyrins were studied in a quadrupole ion trap mass spectrometer. The complexes of heme and three other metalloporphyrins with a variety of basic peptides and model systems were formed via electrospray ionization (ESI) and their stability was probed by energy-variable collision-induced dissociation (CID). A linear dependence for basic peptides and model compounds/metalloporphyrin complexes was observed in the plots of stability versus degrees of freedom and was used to evaluate relative bond strength. These results were then compared with previous data obtained for complexes of metalloporphyrins with His-containing peptides and peptides containing no basic amino acids. The binding strengths of Lys-containing peptide complexes in the gas phase was found to be almost as strong as that of Arg-containing complexes. Both systems showed stronger binding than His- containing peptides studied previously. To probe the structure of Arg and Lys non-covalent complexes (charge solvation versus salt bridges), two techniques, CID and ionmolecule reactions, were used. CID experiments indicate that the gas-phase complexes are most likely formed by charge solvation of the central metal ion in the metalloporphyrin by basic side chains of Arg or Lys. Results from the ionmolecule reaction studies are consistent with the charge solvation structure as well.  相似文献   

19.
MSn experiments involving low energy collisionally activated dissociation (CAD) in a quadrupole ion trap were used to characterize the fragmentation of alkali, alkaline earth and transition metal complexes of five cyclic peptides, and the results were compared with those obtained for protonated cyclic peptides. Complexes with metal ions produced enhanced abundances of the most diagnostic fragments for elucidating the primary structures. For cyclosporin A, nickel and lithium complexes gave additional sequence information compared with the protonated peptide. For depsipeptides, sodium and lead complexes were superior to the protonated peptide or other metal complexes for sequencing residues, and CAD of the lead complexes led to preferential cleavage of two residues at a time. For cyclic lipopeptides, complexes with silver, nickel and strontium ions provided enhanced abundances of key fragment ions.  相似文献   

20.
Selective cleavage effect of basic residues in the fragmentation of short peptides has been studied intensively. In contrast, the role of basic residues in the degradation of large peptides, such as cell‐penetrating peptides, is largely unknown. In this work, the fragmentation of a 21 residues cell‐penetrating peptide TP10 containing four lysine residues was studied by collision‐induced dissociation mass spectrometry and computation methods. The influence of lysine residues on amide bond cleavage and fragmentation products was investigated. The results revealed that the selective cleavage effect of lysine residue did not present when the adjacent lysine residues in TP10 were both protonated. The localized high positive charge density might be the reason of preventing the mobile proton from migrating to the amide bonds in this part of the peptide. In contrast, the mobile proton preferred to reside in the N‐terminal part of TP10 which had less positive charge. This preference gave more information of the peptide sequence in the mass spectrometry study and was helpful for stabilizing the C‐terminal part of TP10, in which the basic lysine residues were preserved and crucial to the cell‐penetrating process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号