首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
T.S. Zhang  Z.H. Du  S. Li  L.B. Kong  X.C. Song  J. Lu  J. Ma 《Solid State Ionics》2009,180(23-25):1311-1317
The sintering, grain growth and ionic conductivities (especially the grain-boundary (GB) conductivity), of 8YSZ electrolytes with various silica levels (~ 30 ppm, ~ 500 ppm and ~ 3000 ppm), doped with 1 at% transitional metal oxides (TMOs), have been systematically investigated by means of dilatometer, electron microscopy and impedance analyzer. It is confirmed that small additions of TMOs (i.e., Fe, Mn, Co or Ni) promote the densification and grain growth of both the pure and Si-containing 8YSZ. The effect of TMOs on the ionic conductivities could be negative or positive, relying on the type of TMOs, sintered density and impurity level. For the dense and pure 8YSZ (with ~ 30 ppm SiO2), the addition of 1 at% TMOs led to a reduction in grain interior (GI) conductivity by ~ 25–33% with little effect on the GB conduction. For the impure 8YSZ (with ~ 500 ppm or 3000 ppm SiO2), except for FeO1.5, the other TMOs (i.e., Mn, Co or Ni) are extremely detrimental to the total conductivity by significantly reducing the GB conduction. Moreover, it is also found that the GB conductivity of the impure 8YSZ doped with Co or Ni is less sensitive to sintering temperature. FeO1.5 showed a scavenging effect on SiO2 in the impure 8YSZ, which is specially beneficial to the total conductivity of samples with higher silica levels and/or sintered at relatively low temperatures.  相似文献   

2.
《Solid State Ionics》2006,177(1-2):95-104
The plastic crystal phase forming N-methyl-N-propylpyrrolidinium tetrafluoroborate organic salt (P13BF4) was combined with 2, 5 and 10 wt.% poly(vinyl pyrrolidone) (PVP). The ternary 2 wt.% PVP/2 wt.% LiBF4/P13BF4 was also investigated. Thermal analysis, conductivity, optical thermomicroscopy, and Nuclear Magnetic Resonance (11B, 19F, 1H, 7Li) were used to probe the fundamental transport processes. Both the onset of phase I and the final melting temperature were reduced with increasing additions of PVP. Conductivity in phase I was 2.6 × 10 4 S cm 1 5.2 × 10 4 S cm 1 1.1 × 10 4 S cm 1 and 3.9 × 10 5 S cm 1 for 0, 2, 5 and 10 wt.%PVP/P13BF4, respectively. Doping with 2 wt.% LiBF4 increased the conductivity by up to an order of magnitude in phase II. Further additions of 2 wt.% PVP slightly reduced the conductivity, although it remained higher than for pure P13BF4.  相似文献   

3.
《Solid State Ionics》2006,177(26-32):2261-2267
Yttria-stabilized zirconia (YSZ) can be used as an oxygen-permeating membrane at elevated temperature (> 1400 °C) due to its chemical and mechanical stability. It was previously shown that the oxygen transport through YSZ membrane in reducing oxygen partial pressure (PO2) was highly influenced by the surface-exchange kinetics that can be improved by porous surface coating layers such as YSZ, GDC (Gd-doped ceria) or YSZ–GDC mixture [H.J. Park, G.M. Choi, J. Eur. Ceram. Soc. 25 (2005) 2577]. However, the increased oxygen flux was still lower than that estimated assuming bulk-diffusion limit and rapidly decreased with time due to the sintering of coating layers and the reaction between bulk YSZ and coating layers. In this study, the oxygen fluxes through YSZ with LaCrO3, GDC + LaCrO3 (bilayer), LaCrO3 + 5 wt.% GDC (mixture), or LaCr0.7Co0.3O3 coatings were measured under controlled PO2 gradient (permeate-side PO2: ∼ 3 × 10 12 atm, feed-side PO2: 2 × 10 10–2 × 10 8 atm) at 1600 °C. The oxygen flux drastically increased with these coatings. The highest increase in oxygen flux was shown with GDC + LaCrO3 (bilayer) coating and was maintained for a long time. The presence of highly catalytic Ce ions while maintaining porous structure in the coating layer may explain the observation. The prevention of formation of resistive layer due to ceria coating may also be partly responsible for the observation.  相似文献   

4.
Lead zirconate titanate (PZT) nano-powder was prepared by a triol sol–gel process. X-ray diffraction and transmission electron microscopy results showed that as-synthesized amorphous powder started to crystallize at the calcination temperature above 500 °C. The crystalline powder was formed into pellets and sintered at temperatures between 900 and 1300 °C. Co-existence of tetragonal and rhombohedral phase was observed in all ceramics. Microstructural investigation of PZT ceramics showed that uniform grain size distribution with average grain size of ∼0.8–2.5 μm were received with sintering temperature up to 1200 °C. Further increasing the temperature caused abnormal grain growth with the grain as large as 13.5 μm. An attempt to optimize densification with uniform grain size distribution was also performed by varying heating rate and holding time during sintering. It was found that dense (∼97%) sol–gel derived PZT ceramic with uniform microstructure was achieved at 1100 °C with a heating rate of 5 °C min−1 and 6 h dwell time.  相似文献   

5.
The effect of phenothiazine (PTZ) as dopant on PVDF/KI/I2 electrolyte was studied for the fabrication of efficient dye-sensitized solar cell (DSSC). The different weight percentage (wt%) ratios (0, 20, 30, 40 and 50%) of PTZ doped PVDF/KI/I2 electrolyte films were prepared by solution casting method using DMF as a solvent. The following techniques such as Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometer (XRD) and AC-impedance analysis have been employed to characterize the prepared polymer electrolyte films. The FT-IR studies revealed the complex formation between PVDF/KI/I2 and PTZ. The crystalline and amorphous nature of polymer electrolytes were confirmed by DSC and XRD analysis respectively. The ionic conductivities of polymer electrolyte films were calculated from the AC-impedance analysis. The undoped PVDF/KI/I2 electrolyte exhibited the ionic conductivity of 4.68×10−6 S cm−1 and this value was increased to 7.43×10−5 S cm−1 when PTZ was added to PVDF/KI/I2 electrolyte. On comparison with different wt% ratios, the maximum ionic conductivity was observed for 20% PTZ-PVDF/KI/I2 electrolyte. A DSSC assembled with the optimized wt % of PTZ doped PVDF/KI/I2 electrolyte exhibited a power conversion efficiency of 2.92%, than the undoped PVDF/KI/I2 electrolyte (1.41%) at similar conditions. Hence, the 20% PTZ-PVDF/KI/I2 electrolyte was found to be optimal for DSSC applications.  相似文献   

6.
《Solid State Ionics》2006,177(13-14):1117-1122
We report a comparative study of transport and thermodynamic properties of single-crystal and polycrystalline samples of the ionic salt CsH5(PO4)2 possessing a peculiar three-dimensional hydrogen-bond network. The observed potential of electrolyte decomposition ≈ 1.3 V indicates that the main charge carriers in this salt are protons. However, in spite of the high proton concentration, the conductivity appears to be rather low with a high apparent activation energy Ea  2 eV, implying that protons are strongly bound. The transport anisotropy though is not large, correlates with the crystal structure: the highest conductivity is found in the [001] direction (σ130 °C 5.6 × 10 6 S cm 1) while the minimal conductivity is in the [100] direction (σ130 °C 10 −6 S cm 1). The conductivity of polycrystalline samples appears to exceed the bulk one by 1–3 orders of magnitude with a concomitant decrease of the activation energy (Ea  1.05 eV), which indicates that a pseudo-liquid layer with a high proton mobility is formed at the surface of grains. Infrared and Raman spectroscopy used to study the dynamics of the hydrogen-bond system in single-crystal and polycrystalline samples have confirmed the formation of such a modified surface layer in the latter. However, no bulk phase transition into the superionic disordered phase is observed in CsH5(PO4)2 up to the melting point Tmelt 151.6 °C, in contrast to its closest relative compound CsH2PO4.  相似文献   

7.
Well crystalline undoped and Cd-doped ZnO rosette-like structures were successfully synthesized at low temperature (80 °C) via solution process technique during 30 min. Zinc nitrate, cadmium nitrate, sodium hydroxide and hexamine were used as starting materials. The morphology and microstructure were determined by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy. X-ray diffraction indicated that the structure has a single phase with wurtzite structure. FESEM indicated that rosette like structures have been formed. This rosette consists of nanorods with length 210 and 460 nm and diameter 50 and 74 nm for undoped and Cd doped ZnO, respectively. HRTEM showed a decrease in the lattice parameter after the Cd doping. EDX showed that the amount of Cd incorporated into ZnO is 6.4 wt.%. Photoluminescence measurements taken on both doped and undoped samples showed that, in the Cd-doped ZnO nanostructures, the band-edge UV emission is blue shifted and the broad green emission intensity decreased.  相似文献   

8.
《Solid State Ionics》2009,180(40):1683-1689
The complex perovskite (Pr0.75Sr0.25)1  xCr0.5Mn0.5O3  δ (PSCM) has been prepared and studied as possible anode material for high-temperature solid oxide fuel cells (SOFCs). PSCM exhibits GdFeO3-type structure and is both physically and chemically compatible with the conventional YSZ electrolyte. The reduction of PSCM resulted in structural change from orthorhombic Pbnm to cubic Pm-3m. Selected area electron diffraction (SAED) analysis on the reduced phases indicated the presence of a √2 × √2 × 2 superlattice. The total conductivity values of ∼ 75% dense Pr0.75Sr0.25Cr0.5Mn0.5O3  δ at 900 °C in air and 5% H2/Ar are 9.6 and 0.14 S cm 1 respectively. The conductivity of PSCM drops with decreasing Po2 and is a p-type conductor at all studied Po2. The average TEC of Pr0.75Sr0.25Cr0.5Mn0.5O3  δ is 9.3 × 10 6 K 1, in the temperature range of 100–900 °C and is close to that of YSZ electrolyte. The anode polarization resistance of PSCM in wet 5%H2 is 1.31 Ω cm2 at 910 °C and in wet CH4 at 930 °C; the polarization resistance is 1.29 Ω cm2. PSCM was unstable at 900 °C in unhumidified hydrogen. Cell performance measurements carried out using graded PSCM and La0.8Sr0.2MnO3 as anode and cathode respectively yielded a maximum power density of 0.18 W cm 2 in wet 5%H2/Ar at 910 °C and the corresponding current density was 0.44 A cm 2 at 0.4 V. The activation energy for the electrochemical cell operating in wet (3% H2O) 5%H2/Ar fuel is 85 kJ mol 1.  相似文献   

9.
《Solid State Ionics》2006,177(15-16):1281-1286
Composite electrolyte comprising phosphotungstic acid (PWA) filler and 1-butyl-3-methyl-imidazolium-tetrafluoroborate (BMImBF4) room temperature ionic liquid (RTIL) in poly(2-hydroxyethyl methacrylate) (PHEMA) matrix has been prepared. The polymer matrix was formed by free radical polymerization of 2-hydroxyethyl methacrylate (HEMA) monomers. BMImBF4 was used as both ionic source and plasticizer, and PWA filler provided the proton conductivity in this system. The interactions and structure changes of the PHEMA-RTIL-PWA composites were investigated by Fourier transform infrared spectra, differential scanning calorimetry, and X-ray diffraction. PWA fillers maintained their Keggin structure within a limited range and enhanced the ionic conductivity of the composite electrolyte. The electrolyte with PWA at the 2 wt.% showed the highest ionic conductivity of 8 × 10 4 S cm 1 at room temperature and 96% relative humidity.  相似文献   

10.
The ionic and electronic charge transport was studied for single crystals of 9.5 mol% yttria-stabilized zirconia with additional nitrogen doping (YSZ:N) of up to 7.5 at.% (referred to the anion sublattice and formula unit Zr0.83Y0.17O1.91) as a function of temperature and nitrogen content. The total conductivity being almost equivalent to the oxygen ion conductivity has been measured by AC impedance spectroscopy under vacuum conditions in order to prevent re-oxidation and loss of nitrogen. The electronic conductivity has been determined by Hebb–Wagner polarization using ion-blocking Pt microelectrodes in N2 atmosphere. The ionic conductivity of YSZ:N decreases in the presence of nitrogen at intermediate temperatures up to 1000 °C. The mean activation energy of ionic conduction strongly increases with increasing nitrogen content, from 1.0 eV for nitrogen-free YSZ up to 1.9 eV for YSZ containing 7.3 at.% N. Compared to nitrogen-free YSZ, the electronic conductivity first decreases at nitrogen contents of 2.17 and 5.80 at.%, but then increases again for a sample with 7.53 at.%. At temperatures of 850 °C and above, the presence of the N3? dopant fixes the electrode potential and thus the oxygen partial pressure at the Pt electrode to very low values. This corresponds to a pinning of the Fermi level at a relatively high energy in the upper half of the band gap. At 7.53 at.% N and 950 °C, the oxygen partial pressure in YSZ:N corresponds to pO2 = 3 × 10? 18 bar. At temperatures above 850 °C, even in the presence of a very small oxygen concentration in the surrounding gas phase, the nitrogen ion dopant becomes highly mobile and thus diffuses to the surface where it is oxidized to gaseous N2. The results are discussed in terms of the ionic and electronic defect structures and the defect mobilities in YSZ:N.  相似文献   

11.
ZnO ceramics doped with Li, Na or K were sintered in air for 4 h at 1000 °C. Electrical conductivity as well as photoluminescence (PL), PL excitation and photoconductivity spectra were measured and compared with those in undoped samples. The influence of both fast and slow cooling of the samples from 1000 °C on measured characteristics was investigated. The yellow–orange PL bands associated with the deep acceptors LiZn, NaZn and KZn were observed and the corresponding PL excitation spectra were determined. These acceptors were found to form some complexes with other lattice defects.  相似文献   

12.
《Solid State Ionics》2006,177(13-14):1149-1155
The Lu2+xTi2−xO7−x/2 (x = 0; 0.052; 0.096; 0.286; 0.44; 0.63; 33.3–49 mol% Lu2O3) nanoceramics with partly disordered pyrochlore-type structure are prepared by sintering freeze-dried powders obtained by a co-precipitation technique with 1600 °C annealing. Similar to pyrochlore-like compositions in the zirconate system, some of the new titanates are good oxide-ion conductors in air. The new solid-state electrolytes have oxide-ion conductivity in the interval of 1.0 × 10 3  2.5 × 10 S/cm at 740 °C in air. This value of conductivity is comparable with that of ZrO2/Y2O3 ceramics. The conductivity of Lu2+xTi2−xO7−x/2 depends on the chemical composition. The highest ionic conductivity is exhibited by nearly stoichiometric Lu2+xTi2−xO7−x/2 (x = 0.096; 35.5 mol% Lu2O3) material containing ∼ 4.8 at.% LuTi anti-site defects.  相似文献   

13.
Borophene, an atomically thin, corrugated, crystalline two-dimensional boron sheet, has been recently synthesized. Here we investigate mechanical properties and lattice thermal conductivity of borophene using reactive molecular dynamics simulations. We performed uniaxial tensile strain simulations at room temperature along in-plane directions, and found 2D elastic moduli of 188 N m−1 and 403 N m−1 along zigzag and armchair directions, respectively. This anisotropy is attributed to the buckling of the borophene structure along the zigzag direction. We also performed non-equilibrium molecular dynamics to calculate the lattice thermal conductivity. Considering its size-dependence, we predict room-temperature lattice thermal conductivities of 75.9 ± 5.0 W m−1 K−1 and 147 ± 7.3 W m−1 K−1, respectively, and estimate effective phonon mean free paths of 16.7 ± 1.7 nm and 21.4 ± 1.0 nm for the zigzag and armchair directions. In this case, the anisotropy is attributed to differences in the density of states of low-frequency phonons, with lower group velocities and possibly shorten phonon lifetimes along the zigzag direction. We also observe that when borophene is strained along the armchair direction there is a significant increase in thermal conductivity along that direction. Meanwhile, when the sample is strained along the zigzag direction there is a much smaller increase in thermal conductivity along that direction. For a strain of 8% along the armchair direction the thermal conductivity increases by a factor of 3.5 (250%), whereas for the same amount of strain along the zigzag direction the increase is only by a factor of 1.2 (20%). Our predictions are in agreement with recent first principles results, at a fraction of the computational cost. The simulations shall serve as a guide for experiments concerning mechanical and thermal properties of borophene and related 2D materials.  相似文献   

14.
《Solid State Ionics》2009,180(40):1640-1645
A facile synthetic route for the development of a new class of dilithium salts is described. Because of the presence of two lithium ions per molecule, these salts require lower concentrations than commonly used salts to achieve comparable ionic conductivities at ambient temperatures. An ionic conductivity of 3.55 × 10 3 S/cm at 30 °C was obtained using 0.5 M salt solution in 1:1 wt/wt ethylene carbonate:dimethyl carbonate. The salts exhibit excellent thermal stabilities to at least 350 °C and are electrochemically stable below 4.2 V versus lithium metal. The best salt was tested with a polymer electrolyte system. Incorporation of a polyethylene glycol-based borate ester plasticizer improved the ionic conductivity of the solid polymer electrolyte film up to 1.36 × 10 5 S/cm at 30 °C, which is 10 times higher than that of un-plasticized electrolyte films.  相似文献   

15.
(K0.5Na0.5)NbO3 (KNN)/[P(VDF-TrFE)70:30] composite thick films with different KNN weight ratios have been fabricated and the effect of KNN mass content on the material structure and properties have been studied in this paper. Properties of the infrared sensor based KNN/[P(VDF-TrFE)70:30] composite thick film were also systematically studied. It was found that the sample containing 30 wt.% KNN show optimal properties for pyroelectric appliance and the highest pyroelectric coefficient was 63 μCm−2 K−1. Infrared sensors using 30 wt.% KNN-70 wt.%[P(VDF-TrFE)70:30] show highest detectivity (D1 = 3.21 × 108 cm Hz1/2 W−1) at 137.3 Hz, indicating it is an promising candidate in lead-free quick response infrared detectors.  相似文献   

16.
《Solid State Ionics》2006,177(19-25):2071-2074
(La, Sr)MnO3 (LSM)–Y doped ZrO2 (YSZ) composite was prepared using YSZ colloidal suspension (initial YSZ particle size ∼100 nm), YSZ and LSM polymer precursors on dense substrates at 800 °C annealing temperature. The results of a symmetrical LSM–YSZ composite cell test showed the area specific resistance for overpotential of 0.14 Ω cm2 at 800 °C, which indicated that the LSM–YSZ composite could be a potential candidate for cathode in SOFCs. The performance of the cell with the LSM–YSZ composite cathode and Ni-YSZ anode was investigated and the power density of about 0.26 W cm 2 was obtained at 850 °C using hydrogen fuel.  相似文献   

17.
Highly oriented ZnO nanorod was successfully synthesised on Ag nanoseed coated FTO substrate via a microwave hydrolysis approach. It was found that the morphology and the optical properties of the ZnO nanorod are strongly influenced by the power of the microwave irradiation used during the growth process. The aspect ratio of the nanorods changed from high to low with the increasing of microwave power. It was also found that the optical band gap of the ZnO nanorod red shifted with the increasing of the microwave power, reflecting an excellent tune ability of the optical properties of ZnO nanorods. The photocatalytic activity of these unique nanorod was evaluated by a dehydrogenation process of isopropanol to acetone in the presence of ZnO nanorod. It was found that the ZnO nanorod exhibited an excellent catalytic performance by showing an ability to accelerate the production of 0.031 mol L−1 of acetone within only 35 min or 0.9 mmol L−1 min−1 from isopropyl alcohol dehydrogenation. It was almost no conversion from isopropyl alcohol when ZnO nanorods was absence during the reaction. In this report, a detailed mechanism of ZnO nanorod formation and the relationship between morphology and optical energy band gap are described.  相似文献   

18.
《Solid State Ionics》2006,177(19-25):1725-1728
Apatite-type La10  xSi6  yAlyO27  3x/2  y/2 (x = 0–0.33; y = 0.5–1.5) exhibit predominant oxygen ionic conductivity in a wide range of oxygen partial pressures. The conductivity of silicates containing 26.50–26.75 oxygen atoms per formula unit is comparable to that of gadolinia-doped ceria at 770–870 K. The average thermal expansion coefficients are (8.7–10.8) × 10 6 K 1 at 373–1273 K. At temperatures above 1100 K, silicon oxide volatilization from the surface layers of apatite ceramics and a moderate degradation of the ionic transport with time are observed under reducing conditions, thus limiting the operation temperature of Si-containing solid electrolytes.  相似文献   

19.
A resonant photoacoustic cell intended for laser-spectroscopy gas sensing is represented. This cell is a miniature imitation of a macro-scale banana-shaped cell developed previously. The parameters, which specify the cavity shape, are chosen so as not only to provide optimal cell operation at a selected acoustic resonance but also to reduce substantially the cell sizes. A miniaturized prototype cell (the volume of acoustic cavity of ∼5 mm3) adapted to the narrow diffraction-limited beam of near-infrared laser is produced and examined experimentally. The noise-associated measurement error and laser-initiated signals are studied as functions of modulation frequency. The background signal and the useful response to light absorption by the gas are analyzed in measurements of absorption for ammonia in nitrogen flow with the help of a pigtailed DFB laser diode oscillated near a wavelength of 1.53 μm. The performance of prototype operation at the second longitudinal acoustic resonance (the resonance frequency of ∼32.9 kHz, Q-factor of ∼16.3) is estimated. The noise-limited minimal detectable absorption normalized to laser-beam power and detection bandwidth is ∼8.07 × 10−8 cm−1 W Hz−1/2. The amplitude of the background signal is equivalent to an absorption coefficient of 2.51 × 10−5 cm−1. Advantages and drawbacks of the cell prototype are discussed. Despite low absorption-sensing performance, the produced miniaturized cell prototype shows a good capability of gas-leak detection.  相似文献   

20.
《Solid State Ionics》2006,177(26-32):2601-2603
New Li+ ion-conductive glasses Li2S–B2S3–Li4SiO4 were synthesized by rapid quenching, and they were transformed into glass ceramics by heat treatment. The heat treatment increased the ionic conductivities of the Li4SiO4-doped glasses, and the highest ionic conductivity observed in the system was 1.0 × 10 3 S cm 1 at room temperature. The glass ceramics were highly stable against electrochemical oxidation with a wide electrochemical window of 10 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号