首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partially textured PbxBa1 ? xNb2O6 ceramics, with compositions around the morphotropic phase boundary, were obtained by the hot forging technique. Scanning electron microscopy revealed that the grains were arranged with their lengthwise direction preferentially in the direction of the forging. From the differences of the X ray diffraction profiles between the samples analyzed in the direction of forging and those analyzed in the pressing direction it was possible to confirm the crystallographic growth habit of the PBN ceramics for the tetragonal and orthorhombic symmetry compositions. The identification of a mixture of tetragonal and orthorhombic symmetry phases in a whole range of studied compositions was also possible. The phase transformation around the morphotropic phase boundary (in this case, tetragonal (4mm) to orthorhombic (m2m)) could be analyzed through the direction change of the polarization vector in partially textured PBN ceramics.  相似文献   

2.
Measurements of the optical properties of Er3+ ions in strontium barium niobate glass and glass ceramics have been carried out. The glasses have been fabricated using a melt-quenching method, and the glass ceramic samples have been obtained from the glass precursor by a thermal treatment. The ceramic samples formed by a glassy phase, and a crystalline phase contains nanocrystals of Sr1?xBaxNb2O6 (SBN) doped with Er3+ ions with a mean size of ~50 nm, as confirmed with XRD. Green up-conversion emission has been obtained under excitation at 800 nm, and the temporal evolution of this emission has been reported with the purpose of determining the involved up-conversion mechanism. These optical measures have confirmed that the Er3+ ions have been incorporated into the SBN matrix, after a thermal treatment, which produced an increment of the up-conversion efficiency.  相似文献   

3.
Phase formation study in lead-free piezoelectric ceramics based on lanthanum doped bismuth sodium titanate (Bi0.4871Na0.4871La0.0172TiO3:BNLT) and zirconium doped barium titanate (BaZr0.05Ti0.95O3:BZT), has been carried out in the system of (1−x)BNLT–xBZT where x = 0.0–1.0, by two-step mixed oxide method. It was observed that the addition of BZT in the BNLT ceramics developed the dielectric and piezoelectric properties of the ceramics with the optimum piezoelectric constant (d33) and dielectric constant (εr) at room temperature of about 138 pC/N and 1651, respectively, from the 0.2 BNLT to 0.8 BZT ceramic sample. The Curie temperature (TC) of this ceramic was found at 295 °C which is 195 °C higher than that of pure BZT ceramics, promising the use of this ceramic in a higher range of temperature.  相似文献   

4.
A simple method of deriving effective demagnetizing factors (Nxe,Nye) for the use of Kittel's ferromagnetic resonance formula is reported. The effective demagnetizing factors are expressed by an anisotropy energy (G) and a static field direction (θ,φ). By this derivation method, the resonance equations of thin films having a uniaxial or a four-fold anisotropy are obtained when a static field is rotated in the film plane. Six arrangements are calculated: (1) perpendicular anisotropy, (2) in-plane anisotropy, (3) cubic-crystal (0 0 1) face, (4) cubic-crystal (0 1 1) face, (5) cubic-crystal (1 1 1) face, and (6) oblique anisotropy films.  相似文献   

5.
A multilayer structure has been proposed that demonstrates improved (0 0 1) texture for FePt-based L10 perpendicular media. Achieving a strong perpendicular magnetic anisotropy requires aligning the L10 crystallographic c-axis along the film normal. The ordered L10 FePt structure is tetragonal with a c/a ratio close to 0.965. This makes discriminating between the three crystallographic variants ([1 0 0], [0 1 0], and the desired [0 0 1]) difficult. Alloying FePt with Cu to reduce the c/a ratio and using a multilayer approach to keep the magnetic layers thin results in a structure with an adjustable Mrt and a strong (0 0 1) texture (rocking curve widths around 2°). This is a remarkable improvement in texture from pure FePt multilayered films or monolithic FePt(X) films. The proposed [MgO(2 nm)/Fe50−xPt50Cux(5 nm)]×n structure limits grain size in the vertical (perpendicular) direction albeit not in the plane of the film. Carbon can be added to the FePtCu layer to reduce the grain size with minimal degradation of the (0 0 1) orientation.  相似文献   

6.
Fe(xML)/Au(xML) superlattices (1⩽x⩽4, ML: monatomic layer thickness) have been investigated by the ferromagnetic resonance method at room temperature. It has been confirmed that out-of-plane anisotropy field Hu shows oscillatory behavior as a function of Fe layer thickness with a period of 1 ML as reported previously from magnetization measurements. In addition, we have found that the in-plane fourfold anisotropy field H2 oscillates in a similar manner. The easy magnetization axis for x⩾2.25 is Fe [1 1 0] in contrast with the case of bulk Fe, and the values of H2 show maxima for x=2.5 and 3.5, suggesting that the atomic steps at interfaces are formed along the Fe [1 1 0] direction. Furthermore, the interface roughness for x=non-integer causes wide distributions of Hu and H2 compared to those for x=integer with flat interfaces.  相似文献   

7.
The effects of TiOx diffusion barrier layer thickness on the microstructure and pyroelectric characteristics of PZT thick films were studied in this paper. The TiOx layer was prepared by thermal oxidation of Ti thin film in air and the PZT thick films were fabricated by electrophoresis deposition method (EPD). To demonstrate the barrier effect of TiOx layer, the electrode/substrate interface and Si content in PZT thick films were characterized by scanning electron microscope (SEM) and X-ray energy dispersive spectroscopy (EDS), respectively. The TiOx barrier thickness shows significant influence on the bottom electrode and the pyroelectric performance of the PZT thick films. The average pyroelectric coefficient of PZT films deposited on 400 nm TiOx layer was about 8.94 × 10−9 C/(cm2 K), which was improved by 70% than those without diffusion barrier layer. The results showed in this study indicate that TiOx barrier layer has great potential in fabrication of PZT pyroelectric device.  相似文献   

8.
The influences of Zr/Ti ratio on electrical properties of the 0.8Pb(ZrxTi1−x)O3–0.2Pb(Co1/3Nb2/3)O3 ceramics prepared by a mixed-oxide method (with x = 0.46, 0.48, 0.50, 0.52, and 0.54) have been investigated in order to identify the morphotropic phase boundary composition in this system. With XRD analysis, the crystal structure of dense specimens appeared to change gradually from tetragonal to rhombohedral with increasing Zr content. The dielectric properties measurements showed a maximum dielectric constant at x = 0.50, while the transition temperature decreased with increasing Zr content in the system. Moreover, all ceramics showed diffused phase transition behaviors with a minimum diffusivity at x = 0.50. In addition, the Polarization–Electric field (PE) hysteresis loops of the ceramic systems also changed significantly with the Zr content. Interestingly, the loop squareness parameter reached maximum around x = 0.50. Other ferroelectric hysteresis parameters showed noticeable change at x = 0.50. These results clearly showed the significance of Zr/Ti ratio in controlling the electrical properties of the PZT–PCN ceramic systems.  相似文献   

9.
Lead-free (1?x)[K0.5Na0.5NbO3]?x[LiSbO3] (x=0, 0.04, 0.05 and 0.06)/(KNN-LS) ceramics were prepared by conventional solid-state reaction route (CSSR). For dense morphology pure KNN ceramic was sintered at 1120 °C and LS modified KNN ceramics were sintered at 1080 °C for 4 h, respectively. The structural study at room temperature (RT) revealed the transformation of pure orthorhombic to tetragonal structure with the increase in LS content in KNN-LS ceramics. Temperature dependent dielectric study confirmed the increase of diffuse phase transition nature with the increase in LS content in KNN-LS ceramics. The presence of orthorhombic to tetragonal (TO?T) polymorphic phase transition temperature (PPT) ~43 °C confirmed the presence of two ferroelectric (orthorhombic and tetragonal) phases in 0.95KNN-0.05LS ceramics at RT. 0.95KNN-0.05LS ceramics showed better ferroelectric and piezoelectric properties i.e., remnant polarization (Pr)~18.7 μC/cm2, coercive field (Ec)~11.8 kV/cm, piezoelectric coefficient (d33)~215 pC/N, coupling coefficient (kp)~0.415 and remnant strain ~0.07% were obtained.  相似文献   

10.
《Current Applied Physics》2010,10(4):1196-1202
New lead-free ceramics (Bi0.92Na0.92−xLix)0.5Ba0.06Sr0.02TiO3 have been fabricated by a conventional ceramic technique and their electrical properties have been studied. X-ray diffraction studies reveal that Li+, Ba2+ and Sr2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure. The partial substitution of Li+ for Na+ increases the remanent polarization Pr of the ceramics. Because of the large Pr and low coercive field Ec, the ceramics with x = 0.075–0.125 exhibit excellent piezoelectric properties: d33 = 189–235 pC/N, kp = 33.6–36.3% and kt = 51.6–54.3%. The ceramics exhibit relaxor behaviors after the substitution of Li+ for Na+. Our results also suggest that polar and non-polar phases may coexist in the ceramics at temperatures above the depolarization temperature Td.  相似文献   

11.
We report the tri-axial grain-orientation effects under a modulated rotation magnetic field for (Y1?xErx)2Ba4Cu7Oy [(Y, Er)247]. The magnetic easy axis at room temperature was drastically changed around x  0.1; however, the Er-doping levels for the conversion of magnetic easy axes from the c-axis to the ab-direction and from the a- to b-axes were quite different. Tri-axial single-ion magnetic anisotropy of Er3+ was roughly 10 times greater than tri-axial magnetic anisotropy generated by both the superconducting CuO2 plane and the blocking Cu–O chain layer. An appropriate choice of rare-earth (RE) ions in RE-based cuprate superconductors enables the reduction of the required magnetic field for the production of bulks and thick films based on the magnetic orientation technique.  相似文献   

12.
The energy subbands in pseudomorphic p-type Si/Si1  xGex /Si quantum wells are calculated within the multiband effective-mass approximation that describes the heavy, light and split-off hole valence bands. We examine the intersubband transitions in this system and the selection rules are obtained for a light polarization vector parallel or perpendicular to the growth direction. Comparison is made with other theories and experiment.  相似文献   

13.
Pyrochlore-free lead zirconate titanate – lead zinc niobate ceramics have been systematically investigated in the as-sintered condition as well as after annealing. The ceramics were characterized by dielectric spectroscopy and Sawyer–Tower polarization (PE) measurements. The powders of Pb[(Zr1/2Ti1/2)(1−x)–(Zn1/3Nb2/3)x]O3, where x = 0.1, 0.3 and 0.5 were prepared using the columbite–(wolframite) precursor method. The general trend seems to indicate that the annealed samples become more normal-ferroelectric-like behavior as opposed to the relaxor-ferroelectric-like behavior observed in the as-sintered state. The as-sintered 0.9PZT–0.1PZN ceramic exhibited weak relaxor-ferroelectric behavior, with a relatively low dielectric constant maximum of 14,000 measured at 1 kHz. Annealing resulted in a transition to normal-ferroelectric-like behavior, a shift in the dielectric maximum temperature from 360 °C to 350 °C, and a dramatic increase in the dielectric constant at 1 kHz to a maximum value of 35,000 for the longer anneal. After thermal annealing at 900 °C for one week a strong enhancement of remanent polarization (Pr) was observed.  相似文献   

14.
Spin reorientation and magnetocrytalline anisotropy of (Nd1−xDyx)2Fe14B (x=0.25, 0.5, 0.75) have been studied from mangetization curves of magnetically aligned powders. In (Nd1−xDyx)2Fe14B, the spin reorientation temperature (TSR) decreases linearly on increasing Dy-substitution from 135 to 56 K with the ratio of ΔTSR=−1.11 K/Dy at% in the composition range of 0⩽x⩽0.75. The spin reorientation angle at 4.2 K decreases on Dy-substitution from 30.4° at x=0 to 14.7° at x=0.75. From the investigation of the magnetocrystalline anisotropy at 4.2 K, the disappearance of the spin reorientation for compositions x≳0.85 is expected.  相似文献   

15.
The dielectric and pyroelectric responses of MgO-modified Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ceramics were investigated near FR(LT)–FR(HT) phase transition. It was found that MgO additive reduced the FR(LT)–FR(HT) phase transition temperature from 41 °C to room temperature (24 °C). Superior room-temperature pyroelectric properties were obtained in the composition of 0.10 wt% MgO addition without DC bias. The largest pyroelectric coefficient, 65 × 10−8 C cm−2 K−1, was detected. Accordingly, the detectivity figures of merit Fd had maximum values of 20 × 10−5 Pa−1/2, and especially the voltage responsivity Fv = 0.91 m2C−1 is the highest value reported so far among all pyroelectric materials. It shows promising potential for application in uncooled pyroelectric infrared detector.  相似文献   

16.
Ferroelectric lead zirconate titanate–lead cobalt niobate ceramics with the formula (1  x)Pb(Zr1/2Ti1/2)O3xPb(Co1/3Nb2/3)O3 where x = 0.0–0.5 were fabricated using a high temperature solid-state reaction method. The formation process, the structure and homogeneity of the obtained powders have been investigated by X-ray diffraction method as well as the simultaneous thermal analysis of both differential thermal analysis (DTA) and thermogravimetry analysis (TGA). It was observed that for the binary system (1  x)Pb(Zr1/2Ti1/2)O3xPb(Co1/3Nb2/3)O3, the change in the calcination temperature is approximately linear with respect to the PCoN content in the range x = 0.0–0.5. In addition, X-ray diffraction indicated a phase transformation from a tetragonal to a pseudo-cubic phase when the fraction of PCoN was increased. The dielectric permittivity is remarkably increased by increasing PCoN concentration. The maximum value of remnant polarization Pr (25.3 μC/cm2) was obtained for the 0.5PZT–0.5PCoN ceramic.  相似文献   

17.
18.
We have studied experimentally the magneto-transport properties of type-II broken-gap Ga1  xInxAsSb/p-InAs heterostructures with various doping levels of the quaternary layer by Te or Zn. A strong electron channel with high electron mobility was observed at the interface of the heterostructures. Interface roughness scattering was found to dominate the electron mobility atT = 4.2–47 K in samples with an undoped or a slightly doped quaternary layer. A drastic mobility drop with increasing Zn doping level was observed. Shubnikov–de Haas oscillations at low temperatures (1.5–20 K) were studied and a weak anisotropy of magnetoresistance was found. Some important parameters of the heterostructures under study were determined.  相似文献   

19.
《Current Applied Physics》2010,10(2):422-427
New lead-free (Bi1−xyNdxNa1−y)0.5BayTiO3 ceramics were prepared by a conventional ceramic technique and their dielectric and piezoelectric properties were studied. X-ray diffraction studies reveal that Nd3+ and Ba2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure, and a morphotropic phase boundary (MPB) of rhombohedral and tetragonal phases is formed at 0.04 < y < 0.10. The partial substitutions of Nd3+ and Ba2+ decrease effectively the coercive field Ec and increase significantly the remanent polarization Pr. Because of lower Ec, larger Pr and the formation of the MPB, the piezoelectric properties of the ceramics are significantly enhanced at x/y = 0.02/0.06: d33 = 150 pC/N and kp = 30.5%. The ceramics exhibit relaxor characteristic, which is probably resulted from the cation disordering in the 12-fold coordination sites. The depolarization temperature Td shows a strong compositional dependence and reaches a minimum value at the MPB. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics may contain both the polar and non-polar regions near the depolarization temperature Td, which cause the polarization hysteresis loop become deformed near/above Td.  相似文献   

20.
D. Dhak  P. Dhak 《Applied Surface Science》2008,254(10):3078-3092
Nanocrystalline powders of Sr1 − xBi2 + yNb2O9 (SBN, x = 0.0, 0.1, 0.2, 0.3, and 0.4; y = 0, 0.066, 0.133, 0.200, and 0.266) were prepared by aqueous solution method using water-soluble Sr-EDTA, Bi-EDTA and Nb-tartarate as the starting materials. XRD showed that the samples were free from fluorite or pyrochlore phase within heat-treatment temperature from 550 to 600 °C. Average crystallite size and particle diameter were observed to be between 10 and 25 nm, which were analyzed through XRD and TEM, respectively. Bi-substitution has substantially improved the sinterability of SBN and enabled to achieve high density (96%), which was otherwise difficult in the case of pure SBN. The dielectric properties of SBN ceramics were significantly enhanced by the partial replacement of Sr2+ ions by the trivalent bismuth ions. The complex impedance diagrams of Bi-substituted SBN, x = 0.4 ceramics exhibited only one semicircle indicating a significant contribution from the grains. In contrast, the impedance plots for pure and other substituted SBN ceramics show an additional low-frequency semicircle, which was attributed to the blocker size effects. The dielectric behavior of pure and Bi-substituted SBN ceramics was rationalized using the impedance and modulus data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号