首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation and characterization of a new type of nanocomposite polyelectrolyte membrane (PEM), based on Nafion® and imidazole modified multi-walled carbon nanotubes (MWCNT-Im), for direct methanol fuel cell (DMFC) applications is described. Related to the interactions between the protonated imidazole groups, grafted on the surface of multi-walled carbon nanotubes (MWCNT), and the negatively charged sulfonic acid groups of Nafion®, new electrostatic interactions can be formed in the interface of the Nafion® and MWCNT-Im which result in both lower methanol permeability and also higher proton conductivity. The physical characteristics of these manufactured nanocomposite membranes were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), water uptake, methanol permeability and ion exchange capacity, as well as proton conductivity. The Nafion®/MWCNT-Im membranes showed higher proton conductivity, lower methanol permeability and, as a consequence, a higher selectivity parameter in comparison to neat Nafion® or Nafion® containing –OH functionalized multi-walled carbon nanotubes (MWCNT-OH) membranes. The obtained results indicated that the Nafion®/MWCNT-Im membranes could be utilized as efficient polyelectrolyte membranes for direct methanol fuel cell applications.  相似文献   

2.
A new polymer nanocomposite membrane based on Nafion and functionalized carbon nanotubes (CNTs) was developed for proton exchange membrane fuel cell (PEMFC) applications. Histidine, an imidazole-based amino acid, was used for modifying the surface of CNTs. The modification of CNTs was characterized by means of Fourier transform infrared spectroscopy (FTIR) and their Zeta potential. The imidazole groups, due to forming and breaking of hydrogen bonding, can facilitate proton transport across the polymer matrix by the Grotthuss mechanism. The final structure of the Nafion/CNT nanocomposites was investigated by small angle X-ray scattering (SAXS). The results confirm that the transport properties of the fabricated new membranes were significantly improved in comparison with unmodified and conventional Nafion® membranes. The power density of the imidazole-CNT (Im-CNT) Nafion® composite membranes was about three times more than Nafion® membranes. Also, the experimental results showed that the proton conductivity for the conventional Nafion® membranes decreased over 100°C but the conductivity for the Nafion®/Im-CNT remained at a nearly constant value above 100°C up to 120°C. Thus, the nanocomposite based on Nafion/imidazole functionalized CNT can be considered as an anhydrous PEMFC membrane for high-temperature applications.  相似文献   

3.
The preparation and characterization of a new type of nanocomposite polyelectrolyte membrane (PEM), based on Nafion® (E. I. du Pont de Nemours and Co., Ltd., for its copolymer of tetrafluoroethylene and perfluorinated vinyl ether) and sulfonic acid (-SO3H) or phosphotungstic acid (PWA) modified nanosilica (Si-SO3H or Si-PWA, respectively), for direct methanol fuel cell (DMFC) applications are described. Physical characteristics of these manufactured nanocomposite membranes were investigated by scanning electron microscopy (SEM), water uptake, methanol permeability and ion exchange capacity, as well as proton conductivity. The Nafion®/Si-PWA and Nafion®/Si-SO3H membranes showed higher proton conductivity, lower methanol permeability and, as a consequence, a higher selectivity parameter, in comparison to the neat Nafion® or Nafion®/pristine nanosilica membranes. The obtained results indicated that both the Nafion®/Si-PWA and Nafion®/Si-SO3H membranes could be utilized as promising polyelectrolyte membranes for direct methanol fuel cell applications.  相似文献   

4.
《Composite Interfaces》2013,20(3):237-249
A Nafion/sulfonated SiO2 molecular sieve composite membrane was prepared by solution casting with sulfonated SiO2 molecular sieve as the modifier. The ATR/FT-IR results showed that sulfonated SiO2 molecular sieve did not change the structure of the membrane. The SEM and XRD results showed that the molecular sieve was distributed uniformly in the membrane. The proton conductivity, methanol permeability, water content, and swelling degree were measured. Compared with Nafion membrane, the composite membrane had higher water content and proton conductivity and lower methanol permeability. The overall performance was the best when the content of sulfonated SiO2 molecular sieve was 5 wt%. These results indicated that Nafion/sulfonated SiO2 molecular sieve composite membranes would be excellent candidate membrane materials for direct methanol fuel cell (DMFC) applications.  相似文献   

5.
《Solid State Ionics》2009,180(40):1694-1701
Fe-silicalite/Nafion composite membranes with high relative selectivity (as defined by the proton conductivity to methanol permeability ratio) of 5.4 and proton conductivity of 11 mS cm 1 were prepared by in situ hydrothermal synthesis of the zeolite within the pores of Nafion membranes. The effects of the zeolite structure and precursor structure were evaluated in terms of transport properties and acidity levels for a series of Nafion membranes modified with silica and tetrapropylammonium (TPA) and tetrabutylammonium (TBA) cations. Introduction of up to 40% (w/w) of silica vs. pure Nafion shows little effect on the transport and acidity properties of the composite membranes. Introduction of tetraalkylammonium (TAA) cations reduces water uptake of the membranes, and results in the appearance of protons that are inaccessible for titration in water media. The selectivity of the composite membranes increases in the order: SiO2/Nafion < TAA/Nafion < Fe-silicalite/Nafion.  相似文献   

6.
The preparation and characterization of a new type of nanocomposite polyelectrolyte membrane, based on DuPont Nafion/imidazole-modified nanosilica (Im-Si), for direct methanol fuel cell applications is described. Related to the interactions between the protonated imidazole groups, grafted on the surface of nanosilica, and negatively charged sulfonic acid groups of Nafion, new electrostatic interactions can be formed in the interface of Nafion and Im-Si which result in both lower methanol permeability and also higher proton conductivity. Physical characteristics of these manufactured nanocomposite membranes were investigated by scanning electron microscopy, thermogravimetry analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, water uptake, methanol permeability, and ion-exchange capacity, as well as proton conductivity. The Nafion/Im-Si membranes showed higher proton conductivity, lower methanol permeability and, as a consequence, higher selectivity parameter in comparison to the neat Nafion or Nafion/silica membranes. The obtained results indicated that the Nafion/Im-Si membranes could be utilized as promising polyelectrolyte membranes for direct methanol fuel cell applications.  相似文献   

7.
Aromatic polymers, such as sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO), sulfonated poly(ether ether ketone) (SPEEK), and sulfonated poly(ether sulfone) (SPES), at the optimum degrees of sulfonation (DS), are suggested and evaluated as alternatives to Nafion for direct methanol fuel cells (DMFCs) applications. To reduce the methanol cross-over, which decreases the efficiency of the cell, organically modified montmorillonite nanoclays (OMMT) were added at 1 wt% to the sulfonated matrices with the optimum DS. The X-ray diffraction (XRD) patterns of nanocomposite membranes proved that the nanoclay layers were exfoliated. The proton conductivity and methanol permeability of the membranes, as well as the ion-exchange capacity (IEC), were measured. The selectivity parameter, ratio of proton conductivity to methanol permeability, was identified at 25°C for the nanocomposite membranes and the results were compared with Nafion117. Finally, the DMFC performance tests were investigated at 70°C and 5 M methanol feed for the manufactured nanocomposite polyelectrolyte membranes (PEMs). The SPEEK-based nanocomposite membrane showed the highest maximum power density in comparison with Nafion 117 and SPES and SPPO nanocomposite membranes. The results indicated that the nanocomposite membranes were promising PEMs for DMFC applications.  相似文献   

8.
《Solid State Ionics》2006,177(13-14):1137-1144
Montmorillonite (MMT) was modified by two types of cationic fluorosurfactants in order to improve compatibility with and dispersion within Nafion® membranes. Perfluoropolyether-containing cationic surfactant improved efficiency, by improving the barrier properties of Nafion® towards methanol. Moreover, the fluoro-modified MMT had no deleterious impact on the ionic conductivity of the membranes in contrast to conventional organo-modified MMT. The performances of a small size fuel cell were accordingly improved.  相似文献   

9.
Nanocomposite polymers based on phosphonic acid functionalized carbon nanotubes (CNT-POH) and sulfonated poly(ether ether ketone) (SPEEK) have been fabricated and employed as highly efficient proton exchange membranes. CNT-POH were synthesized through the grafting of carbon nanotubes (CNT) with diethylphosphatoethyl triethoxysilane and subsequent acidification of phosphate to phosphonic acid ligands. Incorporating CNT-POH into SPEEK matrix improves the proton conductivity at different temperatures and relative humidity, which can be attributed to the homogeneous dispersion of highly hydrophilic phosphonic acid groups and the formation of proton transport channels in the membrane. The methanol permeability of the composite membranes is also decreased, owing to the increased tortuosity of the methanol transport channel. The CNT in SPEEK matrix also enhance the dimensional stability and mechanical property remarkably. Consequently, this phosphonic acid functionalized CNT/SPEEK composite membrane (SPEEK-POH) is a potential candidate for application in direct methanol fuel cells (DMFC).  相似文献   

10.
Trioctylphosphine (TOP)/Pd composites have been synthesized and used as a methanol-barrier material to modify the surface of Nafion 115. The TOP/Pd composites have been applied to the surface of Nafion instead of being incorporated into the Nafion matrix, to provide the best chance of maintaining the inherent proton conductivity of Nafion. The properties of the TOP/Pd-modified membrane, in terms of its conductivity and methanol permeability, as well as the performance of the membrane electrode assembly (MEA) in direct methanol fuel cell (DMFC), have been analyzed and compared with those of bare Nafion. The DMFC performance of the TOP/Pd-modified membrane is somewhat better than that of the bare Nafion one at methanol concentration of 2 M and significantly better at a high concentration of 5 M. The TOP/Pd-modified membrane is able to operate the DMFC using a high concentration of methanol, which can satisfy the requirement to reduce the reactant volumes for portable applications as well as to achieve high performance. In contrast to bare Nafion, the TOP/Pd-modified membrane with its well-adhering and crack-free modified surface shows effect on reducing the methanol loss.  相似文献   

11.
Suwen Wang  Lei Jin  Zhongfang Li 《Ionics》2013,19(7):1027-1036
Polymer composite membranes based on sulfonated poly(phthalazinone ether sulfone) (SPPES) and zirconium sulfophenyl phosphate (ZrSPP) were prepared. Three ZrSPP concentrations were used: 10, 20, and 30 wt%. The membranes were characterized by infrared spectroscopy (IR), X-ray diffraction spectroscopy, thermal gravimetric analysis, and scanning electron microscopy (SEM). The IR results indicated the formation of intense hydrogen bonds between ZrSPP and SPPES molecules. The SEM micrographs showed that ZrSPP well dispersed with SPPES and form a lattice structure. The proton conductivity of the SPPES (degree of sulfonation (DS) 64 %)/ZrSPP (10 wt%) composite membrane reached 0.39 S/cm at 120 °C 100 % relative humidity and that of the 30 wt% of SPPES (DS 16.1 %)/ZrSPP composite membrane reached 0.18 S/cm at 150 °C. The methanol permeabilities of the SPPES/ZrSPP composite membranes were in the range of 2.1?×?10?8 to 0.13?×?10?8?cm2/s, much lower than that of Nafion®117 (10?6?cm2/s). The composite membranes exhibited good thermal stabilities, proton conductivities, and good methanol resistance properties.  相似文献   

12.
A polyelectrolyte complex (PEC) of chitosan and phosphotungstic acid (PWA) was prepared and characterized as a proton-conducting membrane for direct methanol fuel cell (DMFC) applications. Fourier transform infrared spectroscopy showed the presence of stable PWA in PEC. To reduce the methanol permeability, several amounts of montmorilonite (MMT) nanoclays (trade name: Cloisite Na) were introduced to the system. The X-ray diffraction patterns of nanocomposite membranes proved the nanoclay layers were exfoliated in the membranes at loading weights of MMT lower than 3 wt%. Proton conductivity and methanol permeability were measured. According to the selectivity parameter—ratio of proton conductivity to methanol permeability—PEC containing 2 wt% MMT (PEC/2 wt% MMT) was identified as the optimum composition. Finally, DMFC performance tests were investigated at 70°C and 5 M methanol feed and the optimum membrane showed higher maximum power density in comparison with Nafion 117. The results indicated the optimum nanocomposite membrane is a promising polyelectrolyte membrane (PEM) for DMFC applications.  相似文献   

13.
杨金燕 《光谱实验室》2011,(4):2098-2102
用0.5mol.L-1的FeCl3溶液作引发剂,采用原位化学聚合法将吡咯单体聚合在Nafion117膜基体中。复合膜的红外光谱图中出现明显聚吡咯(PPy)的特征吸收峰,说明吡咯单体聚合在Nafion117膜中。机械性能测试表明复合膜的拉伸强度比Nafion117膜提高了。热重测试表明复合膜具有更高的热稳定性能。对复合膜进行了甲醇渗透性能的测试,结果表明复合膜具有明显的阻醇作用,PPy/NF-3膜的甲醇渗透率值是5.9×10^-7cm^2.s^-1,和Nafion117膜相比降低了53%。  相似文献   

14.
The modification of perfluorinated proton exchange membranes (e.g. Nafion) utilizing a layer by layer (LbL) electrostatic assembly of oppositely charged biophilic polymers such as poly-l-lysine as positive layer and dsDNA as a negative layer is developed to protect the interface between the catalyst layer and the membrane in a low temperature fuel cell. Various physicochemical measurements including water uptake, proton conductivity and surface tension were investigated for both the as-received Nafion and the biopolymeric LbL modified Nafion. The smaller water contact angle and the less swelling characteristics of the biopolymer modified Nafion membrane was founded compared to that of as-received Nafion. This clearly indicates that the more hydrophilic surface of biopolymeric layers on Nafion plays an important role in the enhanced dimensional stability. In addition, a potential hypothesis explaining the higher proton conductivity from the LbL biopolymeric film coated Nafion is suggested.  相似文献   

15.
In order to reduce water uptake, swelling ratio, and methanol permeability in sulfonated proton exchange membranes (PEM), novel-sulfonated aromatic poly(ether ether nitrile)s-bearing pendant propenyl groups had been synthesized by direct copolymerization method. All the results showed that the propenyl groups were suitable cross-linkable groups, and that this method was an effective way to overcome the drawbacks of sulfonated polymers at high ion exchange capacity (IEC) values. By cross-linking, the water uptake, swelling ratio, and methanol diffusion could be restricted owing to the formation of compact network structure. For example, CSPEN-60 membranes showed the proton conductivity of 0.072 S cm?1 at 80 °C, while the swelling ratios and water uptake (17.9 and 60.7 %) were much lower than that of the SPEN-60 membrane (60.8 and 295.2 %). Meanwhile, a 1.1 × 10?7 cm2 s?1 of methanol diffusion was obtained which was much lower than that of Nafion 117 (14.1 × 10?7 cm2 s?1). Although the proton conductivity of the CSPEN-60 membranes is lower than that of the SPEN-60 membrane, the selectivity is much higher. The CSPEN-60 membrane exhibited the highest selectivity among the tested membranes, about 5.8 times higher compared with that of Nafion117.  相似文献   

16.
The water states in perfluorosulfonic acid membranes (Nafion®) were evaluated using low temperature differential scanning calorimetry (DSC) on both vapor and liquid penetrants. At low sorption levels, water sorbed in Nafion existed in the nonfreezable bound state until a critical value was reached. The critical, nonfreezable water content corresponded to 4.8 water molecules per sulfonate group. Beyond that critical value, additional sorbed water was partitioned between freezable and nonfreezable bound states. The freezable water was in intermediate or freezable bound water state with subzero fussion temperatures. The observed water fusion enthalpy for every additional gram of sorbed water was less than that of pure water. The partition coefficient (K) between the nonfreezable bound state and the freezable state water was estimated as 0.755. The critical nonfreezable water content (W c ) and the partition coefficient for vapor permeate in Nafion were similar to those of liquid water penetrant. These findings allow one to estimate the bound and freezable water distribution in Nafion. The K value, in conjunction with the critical water content (W c ), can be used as a quantitative indicator to characterize water states in ionomers. This model may serve as the basis to account for water transport, ionic conductivity, and proton transfer changes in various solid electrolyte membranes.  相似文献   

17.
The solution casting technology was applied to manufacture thin polymer films (~?20–30 μm) from the ionomer solution of perfluorinated polymer with short side chains (an analogue of the commercial polymer Aquivion®). The influence of annealing temperature on the mechanical properties (elastic limit), proton conductivity, and heat capacity was investigated. The elastic limit, glass transition temperature, and proton conductivity of the samples were found to reach their maximum values at the annealing temperature 170?±?5 °C. Comparative studies of membrane-electrode assemblies (MEA) using the commercial (Nafion NR212) and solution-casted membranes were carried out. MEA with optimized Aquivion-type membranes showed satisfactory values of fuel crossover and maximum output power. The results of the conducted studies show that the prepared Aquivion-type membranes are very promising for practical application in MEA.  相似文献   

18.
《Solid State Ionics》2009,180(40):1690-1693
Sulfonated poly(ether ether ketone)/polyethyleneimine (sPEEK/PEI) composite membranes were prepared to reduce the water uptake and methanol permeability of highly sulfonated PEEK membranes (> 65%). Incorporation of small amounts of PEI reduced ionic cluster size via electrostatic complex formation between anionic sulfonic groups of the sPEEK and the cationic amine groups of the PEI, and thus affected membrane properties considerably. Ion cluster size decreased with increasing PEI concentration by small angle X-ray scattering pattern. Addition of 1 wt.% of PEI resulted in reduction of water uptake and methanol permeability by 30% at 60 °C and 85% at room temperature, respectively. The thermal and mechanical stabilities were also enhanced by formation of physical cross-linking induced by electrostatic interactions between acid/base polymers. Although proton conductivity was also reduced by PEI incorporation as a part of the sulfonic acid groups involved in ionic complex formation, its effect on proton conductivity was not as strong as on methanol permeability.  相似文献   

19.
In the present investigation, the methanol crossover rate through Nafion®-115 membrane at different temperatures and different concentrations had been investigated in a fuel cell test apparatus by using gas chromatography analysis. The singledirect methanol fuel cell (DMFC) tests were carried out to investigate the effect of the concentration of methanol aqueous solutions and cell temperature on methanol crossover and consequently, on the open circuit voltage and the cell performance of DMFC. It can be found that the methanol crossover rate through Nafion® membrane increases as methanol concentration and temperature increase. It can also be found that methanol crossover presented a negative effect on the open circuit voltage and the single DMFC performance. Single DMFC test results showed that an improved cell performance was obtained as temperature increased although the methanol crossover rate increased with temperature increment.  相似文献   

20.
Novel sulfonated poly (arylene ether nitrile) with pendant carboxylic group copolymers have been prepared as proton exchange membranes which were applied in direct methanol fuel cells (DMFCs). Compared with others, this work shows two main advantages: the crosslinked method is uncomplicated and the membranes were prepared via the hydroquinonesulfonic acid potassium salt (SHQ) as crosslinker mingled in sulfonated poly (arylene ether nitrile) (SPEN) to avoid the decrease of proton conductivity. The obtained crosslinked membranes exhibited improved dimensional stability; larger tensile strength than that of pure SPEN; and good thermal, mechanical properties. Furthermore, after crosslinking, the membranes had low methanol permeability values (0.78–3.4 × 10?7 cm2 s?1) and displayed good proton conductivities in the range of 0.0328–0.0385 S·cm?1 at room temperature. The sample of SPEN-SHQ-5 % showed highest selectivity value of 4.205 × 105 S·s cm?3, which was 11.9 times higher than that of Nafion 117. All of these results indicated that these membranes would be the potential candidates as proton exchange membranes (PEMs) in DMFCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号