首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocrystalline NiFe2O4 was in‐situ prepared in amorphous silica using tetramethylor‐thosilicate and nickel (iron) nitrate hydrate as the starting materials in a sol‐gel reaction. The magnetic nanocrystals in the amorphous silica glasses grew slowly with increasing temperature. Above 600C, nickel ferrite nanoparticles began to precipitate from the amorphous silica matrix. Mössbauer spectroscopy of the nanocomposites suggested that in the silica glasses, Fe ions were present exclusively as Fe3+ in octahedral coordination, and the chemical environment of the Fe3+ ions appeared to remain unchanged until the crystallization of nickel ferrite nanocrystals. The formation of NiFe2O4 nanocrystals was the result of partial transformation of the FeO6 octahedra to FeO4 tetrahedra. The nanocrystalline NiFe2O4 are characterized by super‐paramagnetic behaviour at room temperature.  相似文献   

2.
To investigate the effects of sequestration condition on hydrogen bonds between mineral and water, molecular dynamics simulations have been performed. The simulations were conducted at conditions related with geologic sequestration sites: pressure (3.1–32.6 MPa), temperature (318 and 383 K), salinity (0–3 M), salt (NaCl and CaCl2) and silica surface models Q2 (geminal), Q3 (isolated) and amorphous Q3. The hydrogen bonds were classified into four types: silica–silica, silica–dissolved CO2, silica–water as donors and silica–water as acceptors. The mean numbers of hydrogen bonds for each type were analysed. The results show that: (1) silica surface silanol groups do not form H-bonds with dissolved CO2 molecules in water (brine); (2) The mean number of hydrogen bonds between silanol groups follows the order: Q2 > amorphous Q3 > Q3; (3) The mean number of hydrogen bonds between silanol and water molecules follows the order: Q3 > amorphous Q3 > Q2.  相似文献   

3.
Composite solid electrolytes in the system (1???x)Li2CO3xAl2O3, with x?=?0.0–0.5 (mole), were synthesized by a sol–gel method. The synthesis carried out at low temperature resulted in voluminous and fluffy products. The obtained materials were characterized by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy/energy-dispersive X-ray, Fourier transform infrared spectroscopy and AC impedance spectroscopy. Structural analysis of the samples showed an amorphous feature of Li2CO3 and traces of α-LiAlO2, γ-LiAlO2 and LiAl5O8. The prepared composite samples possess high ionic conductivities at 130–180 °C on account of the presence of lithium aluminates as well as the formation of a high concentration of an amorphous phase of Li2CO3 via this sol–gel preparative technique.  相似文献   

4.
Irradiation effect of low-energy ion beam has been investigated on nanocoating developed with silica, titania and silica–titania core–shell nanoparticles embedded in an organic binder for nanopaint application. In this work, we have taken polyurethane as a model organic binder. Silica nanoparticles have been prepared through sol–gel synthesis with a particle size of 85?nm. Titania and core–shell nanoparticles have been prepared through both sol–gel and peptization process. Particle sizes obtained were 107?nm for titania and 240?nm for core–shell nanoparticles prepared through sol–gel process and 75?nm for TiO2 and 144?nm for core–shell nanoparticles prepared through peptization process. The coating formulations were developed with the above nanoparticles individually and nanoparticle concentration was varied from 1 to 6?wt% and the best performance in terms of hydrophobicity was obtained with 4?wt % of the nanoparticles in polyurethane coating formulation. All the coating formulations prepared were applied on a glass substrate and dried at 100°C. The dry film thickness obtained was around 100?µm in each case. These films dried on glass substrate were irradiated by nitrogen and argon ion beam with energy of 26?keV at fluences of 1014 to 1016?ions/cm2. The anti-algal property of the irradiated samples was improved and hydrophobicity was reduced.  相似文献   

5.
A metals–citrate–silica gel was prepared from metallic salts, citric acid and tetraethylorthosilicate by sol–gel method (citrate precursor technique) and it was further used to prepare magnetic nanocomposites. The gel was dried at 100 °C and then calcined at temperatures between 600 and 1000 °C to obtain powder samples. The nanocomposites were characterized by XRD, IR, VSM and TEM techniques. The diffraction patterns show the formation of a single magnetic phase identified as CoFe2O4. Magnetic nanoparticles with average size less than 50 nm were obtained which are well dispersed in the silica matrix. The combination of different metals concentrations and calcining temperatures allowed obtaining samples with magnetization ranging from 3.6 to 25.3 emu/g.  相似文献   

6.
利用粉末X射线衍射和扩展X射线吸收精细结构(EXAFS)技术对用化学共沉淀法制备的非晶和纳米ZrO2·15%Y2O3体系进行了研究.粉末X射线衍射结果表明,300℃温度处理的样品呈非晶态,500℃时样品已经晶化,形成单一立方相的纳米结构.EXAFS分析显示,在从非晶态向纳米结构晶化的过程中,最近邻的ZrO配位层的配位数和键长没有发生明显的改变,说明300℃时已经形成和900℃相同的最近邻局域结构.而对于ZrZr(Y)配位层,随着晶粒尺寸的减 关键词: EXAFS 晶化 配位数 键长  相似文献   

7.
This paper describes a simple way for the coating of magnetite nanoparticles (MNPs) with amorphous silica. First, MNPs were synthesized by controlled co-precipitation technique under N2 gas and then their surface was modified with trisodium citrate in order to achieve particles with improved dispersibility. Afterward, magnetite-silica core/shell nanocomposites were prepared by a sol–gel approach, using magnetic fluid including electrostatically stabilized MNPs as seeds. The prepared samples were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, zeta potential analysis and vibrating sample magnetometer (VSM) in order to study their structural and magnetic properties. FT-IR and XRD results imply that resultant nanocomposites are consisted of two compounds; Fe3O4 and SiO2 and TEM images confirm formation of their core/shell structure. TEM images also show increase in silica shell thickness from ∼5 to ∼24 nm with increase in amount of tetraethyl orthosilicate (TEOS) used during the coating process from 0.1 to 0.3 mL. Magnetic studies indicate that Fe3O4 nanoparticles remain superparamagnetic after coating with silica although their Ms values are significantly less than pristine MNPs. These core/shell nanocomposites offer a high potential for different biomedical applications due to having superparamagnetic property of magnetite and unique properties of silica.  相似文献   

8.
Nanocrystalline Mg and MgH2 samples have been prepared by high-energy ball milling and gas phase condensation methods. Starting from these materials in their “as received” state without air exposure, a study of the oxygen and air passivation behaviour was carried out by “in situ” analysis of the samples by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The binding energy and photoemission Auger parameters have been determined for metallic magnesium as well as for magnesium hydride, oxide and hydroxide species. Values of the MgH2 material were reported for the first time. The study clearly shows the formation of an oxide passivation layer of ca. 3-4 nm in thickness for all the nanocrystalline magnesium samples handled under controlled inert gas atmospheres. A hydroxide like amorphous layer is formed at the topmost surface layers of the nanocrystalline Mg and MgH2 samples. The implication of these studies for H2 storage and transport applications of nanocrystalline magnesium is discussed.  相似文献   

9.
A systematic study of LaMn1?xCoxO3 perovskite series by means of X-ray absorption spectroscopy in the extended X-ray absorption fine structure (EXAFS) range of the K-absorption edge of Mn is reported. The Mn–K edge absorption measurements in the EXAFS region were performed to study the local surrounding of Mn ions. Polycrystalline powder samples of LaMn1?xCoxO3 (x=0, 0.02; 0.2; 0.4; 0.5; 0.6; 0.8) prepared by solid-state reaction were used. The EXAFS spectra were analyzed with the FEFF8 computer program. The Mn–O distances of Mn to the nearest oxygen surroundings were evaluated for the samples in the series and compared with the Co–O distances obtained by EXAFS in V. Procházka et al., JMMM 310 (2007) 197 and with results of X-ray powder diffraction in C. Autret, J. Phys. Condens. Matter 17 (2005) 1601.  相似文献   

10.
Tungsten oxide (WO3) films were prepared on indium–tin oxide (ITO) glass by sol–gel method. The influence of annealing temperature on the structural, morphological, optical, electrochemical, and electrochromic properties has been investigated. The film annealed at 250 °C with an amorphous structure exhibits a noticeable electrochromic performance, such as the highest optical modulation of 58.5 % at 550 nm, high electrochemical stability, and excellent reversibility (Q b/Q c?=?96.3 %). An electrochromic (EC) device based on WO3/NiO complementary structure shows improved performance. It exhibits high optical transmittance modulation of 62 % at 550 nm, excellent cycling stability, and relatively fast electrochromic response time (10 s for coloration and 19 s for bleaching).  相似文献   

11.
The Er3+/Yb3+ co-doped Y2Ti2O7 phosphors were synthesized by the sol–gel method. XRD, TEM, and photoluminescence spectra of samples were measured and studied. The results demonstrate that the Y2Ti2O7 would transform from the amorphous to nanocrystalline at about 750 °C. The mechanism of both upconversion and near infrared (NIR) photoluminescence and their changes with annealing temperature were analyzed. What is more, the pump-saturation effect of NIR emission and the anomalous slopes of the fitted straight line in the double-logarithmic plots for upconversion emissions were found in the nanocrystalline samples, which can be ascribed to domination of upconversion over linear decay for the 4I11/2 and 4I13/2 state and the saturation of 4I13/2 state in Er3+ ions largely owing to the energy back-transfer process. They are induced by high pump power and Yb3+ ions concentration.  相似文献   

12.
Nano-crystalline indium oxide (In2O3) particles have been synthesized by sol–gel and hydro-thermal techniques. A simple hydro-alcoholic solution consisting indium nitrate hydrate and citric acid (in sol–gel method) and 1, 4-butandiol (in hydro-thermal method) have been utilized. The structural properties of indium oxide nano-powders annealed at 450 °C (for both methods) have been characterized by the X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and specific surface area (SSA) analysis. Structural analysis of the samples shows cubic phase in sol–gel and cubic-hexagonal phase mixture in hydro-thermally prepared particles. The nano-particles prepared by sol–gel method have nearly spherical shape, whereas hydro-thermally-made ones display wire- and needle-like shape in addition to the spherical shape. The obtained In2O3 nano-particles surface areas were 23.2 and 55.3 in sol–gel and hydro-thermal methods, respectively. The optical direct band gap of In2O3 nano-particles were determined to be ∼4.32 and ∼4.24 eV for sol–gel and hydro-thermal methods, respectively. These values exhibit ∼0.5 eV blue shift from that the bulk In2O3 (3.75 eV), which is related to the particle size reduction and approaching the quantum confinement limit of nano-particles.  相似文献   

13.
Ball milling was used to produce nanostructured Y-Fe alloys. Depending on preparation conditions, nanocrystalline and amorphous components are formed to coexist. The transmission Mössbauer spectra exhibit YFe2 and amorphous components. The influence of superparamagnetic YFe2 particles was separated from the amorphous part by measuring at 77 K. The thermal stability of the samples and the growth of equilibrium phases was studied by annealing.  相似文献   

14.
CaFe2O4 nanocrystalline powders were synthesized through sol–gel treatment in which the stoichiometric mixing of various nitrates involving calcium and iron in presence of citric acid was performed. Subsequently, the as prepared sample was annealed at various temperatures in order to obtain the fine distribution of size including the bulk counterpart. The samples were then characterized using powder X-ray diffraction followed by 57Fe Mössbauer spectroscopy, SQUID as well as vibrating sample magnetometry. The results of spectroanalyses revealed that the samples were formed in single phase cubic spinel structure and exhibits room temperature superparamagnetism, except the bulk one, which crystallizes in characteristic orthorhombic structure of CaFe2O4 and displays trivial coercivity and remanent magnetization at room temperature.  相似文献   

15.
BaFe12O19 fine particles were synthesized after milling a precursor obtained as an intermediate in the sol–gel method. The samples were analyzed by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. The milling process favors the formation of the BaM phase and therefore, provides a better specific magnetization and smaller grain size compared to the same preparation route but without the milling step. We report the magnetic and structural properties of the ferrite samples obtained from milled and non-milled precursors.  相似文献   

16.
《Composite Interfaces》2013,20(5-7):615-624
In the present work the sol–gel process is used to obtain mullite (3Al2O3·2SiO2) from silica (SiO2) deposition on alumina (Al2O3) cylindrical pieces. The influence of different percentages of yttria (Y2O3) on this superficial reaction is also studied. The alumina matrix is constituted by commercial γ-alumina of 99.99% purity with very high porosity. The cylinders are 3 mm in diameter and 4–6 mm in length. SiO2 is deposited on the cylinders by sol–gel process, from TEOS (tetraethyl orthosilicate, Si(OCH2CH3)4) in ethanol solution. The yttrium oxide is suspended in this solution and then the alumina cylinders constituting the support material are added. Silica is produced by the hydrolysis reaction of the mentioned alkoxide. The molar ratio TEOS/ETOH/H2O is strictly controlled to be 2/4/4. The hydrolysis is carried out in basic medium adding 0.3 ml NH4OH, and at 40°C. The basic medium is used to accelerate the steps of the sol–gel process. The resulting pH before the hydrolysis starts is 9.8. Samples with 2%, 4% and 6% yttria addition were prepared and then heat treated at 1300°C and 1500°C for two hours. For comparative purposes samples without yttria were prepared and treated in the same way. The obtained products were characterized by optical and scanning electron microscopies, electron diffraction analysis X-ray and X-ray diffraction, among other techniques.  相似文献   

17.
Spodumene is an aluminosilicate that has proven suitable for high-dose TL dosimetry of beta or gamma rays. Due to the presence of lithium in its chemical composition (LiAlSi2O6 – β-LAS), it has potential as neutron dosimeter as well. This silicate may be obtained naturally or synthetically. The synthetic LAS has been produced by solid state reaction and conventional sol–gel, whose difficulty arises from the need to employ high temperatures and high cost reagents, respectively. Alternative routes like Pechini and proteic sol–gel methods are promising, because they can reduce production costs and the possibility of environmental pollution. This work aimed at producing spodumene with the proteic sol–gel method using edible unflavored gelatin as a precursor and also with the Pechini method. The products were characterized physically and morphologically, and their applicability as TL dosimeter was investigated, comparing the sensitivity of samples produced by different methods. Two sets of samples were produced using different sources of silicon, tetraethyl orthosilicate (TEOS, Si(C2H5O)4) and silica (SiO2). The materials produced were characterized by X-ray diffraction and by thermal analysis in order to evaluate their structural properties, as well as possible temperature-dependent changes in physical or chemical properties. The syntherized pellets produced with these crystals were irradiated with a 90Sr–90Y source and their TL glow curves were evaluated. The production of β-LAS was successful by both methods, either using silica or TEOS as a silicon source. The crystals were obtained using much lower temperatures than by methods described in literature. We observed that the method of powder production was critical to develop a radiation detector: the best TL material was the powder produced using silica and the Pechini Method.  相似文献   

18.
The process of mechanical alloying consists of intimate mixing and mechanical working of elemental powders in a high-energy ball mill. It has been well established that this process is able to produce nanocrystalline and amorphous material. In this study, the structural effects of mechanical alloying of pure Fe, Fe50W50 and Fe50Mo50 powders were investigated by X-ray diffraction and Mössbauer spectroscopy. For all cases, nanocrystalline and/or amorphous fractions were found after milling. The resulting particle size was determined by X-ray diffraction. Pure Fe does not amorphize even after prolonged milling times. For the nanocrystalline powder, significant changes in the linewidth and the hyperfine field are found. Powder mixtures of Fe50Mo50 and Fe50W50 are completely amorphous after milling times of 10 h, as seen by Mössbauer spectroscopy, but nanocrystalline fractions of the non-iron part are still found in X-ray diffraction. Also in the amorphous state, further changes in the hyperfine parameters are found with increasing milling time.  相似文献   

19.
SiGeO films have been produced by a sol–gel derived approach and by magnetron sputtering deposition. Post-thermal annealing of SiGeO films in forming gas or nitrogen atmosphere between 600 and 900 °C ensured the phase separation of the SiGeO films and synthesis and growth of Ge nanoclusters (NCs) embedded in SiO2. Rutherford backscattering spectrometry analysis evidenced a similar Ge concentration (~12 %), but a different Ge out-diffusion after annealing between the two types of techniques with the formation of a pure SiO2 surface layer (~30 nm thick) in sol–gel samples. The thermal evolution of Ge NCs has been followed by transmission electron microscopy and Raman analysis. In both samples, Ge NCs form with similar size increase (from ~3 up to ~7 nm) and with a concomitant amorphous to crystalline transition in the 600–800 °C temperature range. Despite a similar Ge concentration, a significant lower NCs density is observed in sol–gel samples attributed to an incomplete precipitation of Ge, which probably remains still dispersed in the matrix. The optical absorption of Ge NCs has been measured by spectrophotometry analyses. Ge NCs produced by the sol–gel method evidence an optical band gap of around 2 eV, larger than that of NCs produced by sputtering (~1.5 eV). These data are presented and discussed also considering the promising implications of a low-cost sol–gel based technique towards the fabrication of light harvesting devices based on Ge nanostructures.  相似文献   

20.
The influence of synthesis variables such as time, cetyltrimethyl ammonium hydroxide (CTAOH) concentration, water content, pH, temperature and silica source on the structural properties of Si-MCM-48 is investigated. Time-dependent studies on the progressive development of MCM-48 have indicated that synthesis time is a crucial parameter, which influences the unit cell parameter. The formation of different mesophases was observed when the concentration of CTAOH and pH of the initial gel were varied. The 29Si MASNMR results showed that the (Q2+Q3)/Q4 ratio decreases with the increase in synthesis temperature. On account of increase in Q4 units at high-temperature synthesis run, Si-MCM-48 with highly polymerized silica walls with lower surface area was obtained when compared with Si-MCM-48 prepared at lower temperature. Such effect was not significant when Si-MCM-48 was synthesized at the same temperature but using silica sol as a source in place of fumed silica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号