首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
《Solid State Ionics》2006,177(19-25):1843-1848
The electrochemical performance of La0.58Sr0.4Co0.2Fe0.8O3−δ (L58SCF), La0.9Sr1.1FeO4−δ (LS2F) and LSM (La0.65Sr0.3MnO3−δ)/LSM–YSZ (50 wt.% LSM–50 wt.% ZrO2 (8 mol% Y2O3)) cathode electrodes interfaced to a double layer Ce0.8Gd0.2O2−δ (CGO)/YSZ electrolyte was studied in the temperature range of 600 to 850 °C and under flow of 21% O2/He mixture, using impedance spectroscopy and current density–overpotential measurements. The L58SCF cathode exhibited the highest electrocatalytic activity for oxygen reduction, according to the order: LS2F/CGO/YSZ  LSM/LSM–YSZ/CGO/YSZ < L58SCF/CGO/YSZ.  相似文献   

2.
《Solid State Ionics》2006,177(3-4):351-357
Sub-micron yttria-stabilized zirconia (YSZ) electrolyte layer was prepared by a liquid state deposition method and with an average thickness of 0.5 μm to improve the performance of the anode-supported solid oxide fuel cell (SOFC). The YSZ precursors, containing yttrium and zirconium species and an additive, poly-vinyl-pyrrolidone (PVP), were spin-coated on a Ni/YSZ anode substrate. Several properties, including crystalline phases, microstructures, and current–voltage (IV) characteristics, were investigated. The thin film of 4 mol% Y2O3-doped ZrO2 (4YSZ) consisted of cubic, tetragonal, and a trace of monoclinic phases, and showed a crack-free layer after sintering at 1300 °C. The anode supported SOFC, which consists of the Ni–YSZ anode, 4YSZ electrolyte, and Pt/Pd cathode, showed power densities of 477 mW/cm2 at 600 °C, and 684 mW/cm2 at 800 °C. Otherwise, the surface cracks of the other YSZ-coated samples (e.g. 8YSZ) can be repaired by a multi-coating method.  相似文献   

3.
C. C. Appel 《Ionics》1995,1(5-6):406-413
Cubic stabilized ZrO2 with 8 mol% Y2O3 (YSZ) is commonly used as an electrolyte in solid oxide fuel cells (SOFC). One of the most promising cathode materials is La,Sr-manganite (LSM). During manufacture and operation of the SOFC, Mn diffuses from the LSM into YSZ. The structural changes caused by the presence of Mn in the electrolyte under various oxygen partial pressures have been examined by X-ray diffraction. Microstructures of YSZ containing Mn have been examined by transmission electron microscopy and surface changes of the electrolyte due to Mn diffusion were studied by scanning electron microscopy. The results are discussed with respect to properties and stability of the electrolyte and the SOFC. Paper presented at the 2nd Euroconference on Solid State Ionics, Funchal, Madeira, Portugal, Sept. 10–16, 1995  相似文献   

4.
《Solid State Ionics》2006,177(19-25):2065-2069
Novel Ni–Al2O3 cermet-supported tubular SOFC cell was fabricated by thermal spraying. Flame-sprayed Al2O3–Ni cermet coating played dual roles of a support tube and an anode current collector. Y2O3-stabilized ZrO2 (YSZ) electrolyte was deposited by atmospheric plasma spraying (APS) to aim at reducing manufacturing cost. The gas tightness of APS YSZ coating was achieved by post-densification process. The influence of YSZ coating thickness on the performance of SOFC test cell was investigated in order to optimize YSZ thickness in terms of open circuit voltage of the cell and YSZ ohmic loss. It was found that the reduction of YSZ thickness from 100 μm to 40 μm led to the increase of the maximum output power density from 0.47 W/cm2 to 0.76 W/cm2 at 1000 °C. Using an APS 4.5YSZ coating of about 40 μm as the electrolyte, the test cell presented a maximum power output density of over 0.88 W/cm2 at 1030 °C. The results indicate that SOFCs with thin YSZ electrolyte require more effective cathode and anode to improve performance.  相似文献   

5.
Pressurised operation of solid oxide fuel cells (SOFC) has been shown to significantly improve their performance (Singhal, 2000) [1], however little work has been done on the effects of pressure on SOFC cathodes. The effect of pressurised oxygen on the area specific polarisation resistance (ASRp) of (La0.8Sr0.2)0.95MnO3-δ/8YSZ SOFC cathodes was determined by electrochemical impedance spectroscopy (EIS). Pellets of 8YSZ were pressed and sintered at 1350 °C, and screen printed layers of LSM/8YSZ cathode and LSM current collector were applied and sintered at 1300 °C and 1200 °C respectively. EIS was carried out between 1 and 3 bar oxygen at 800-1000 °C. One process dominated the spectra, and was identified as process C, (Jorgensen and Morgensen, 2001) [2] by comparison of measured and reference frequency maxima, the dependence of polarisation resistance on PO2, the capacitance, and the activation energy. It is suggested that this represents the physical process of dissociative adsorption of oxygen at the triple phase boundaries of the electrode. A second process, with a magnitude almost independent of PO2, is observed, which may be process B [2], related to transport of oxygen ions in the YSZ.  相似文献   

6.
Thin films of yttria-stabilized zirconia (YSZ) electrolyte were prepared by atomic layer deposition at 300 °C for solid oxide fuel cell (SOFC) applications. YSZ samples of 300-1000 nm thickness were deposited onto La0.8Sr0.2MnO3 (LSM) cathodes. A microstructural study was performed on these samples and their electrical properties were characterised between 100 and 390 °C by impedance spectroscopy. A remarkable feature is that the as-deposited layers were already crystalline without any annealing treatment. Their resistance decreased when reducing the layer thickness; nevertheless, their conductivity and activation energy were significantly lower than those reported in the literature for bulk YSZ.  相似文献   

7.
《Solid State Ionics》2006,177(19-25):2071-2074
(La, Sr)MnO3 (LSM)–Y doped ZrO2 (YSZ) composite was prepared using YSZ colloidal suspension (initial YSZ particle size ∼100 nm), YSZ and LSM polymer precursors on dense substrates at 800 °C annealing temperature. The results of a symmetrical LSM–YSZ composite cell test showed the area specific resistance for overpotential of 0.14 Ω cm2 at 800 °C, which indicated that the LSM–YSZ composite could be a potential candidate for cathode in SOFCs. The performance of the cell with the LSM–YSZ composite cathode and Ni-YSZ anode was investigated and the power density of about 0.26 W cm 2 was obtained at 850 °C using hydrogen fuel.  相似文献   

8.
The use of a double-layer ceria-gadolinia (CGO) - yttria-stabilized zirconia (YSZ) electrolyte has been suggested as an alternative for efficient intermediate temperature operation of Solid Oxide Fuel Cells (SOFC). CGO offers the advantage of high ionic conductivity and good chemical compatibility with Co-containing cathode perovskite materials, while YSZ serves as an electron blocking layer. The main problem for the applicability of such a composite film still remains the formation of a poorly conductive solid solution phase at the CGO/YSZ interface. The microstructure and the elemental distribution of this solid solution phase were examined with the aid of electronic probe microanalysis. Powders with the same composition were synthesized in order to examine their crystal structure and electrical properties, with the objective to propose a suitable gradation at the interface in order to improve the feasibility of CGO/YSZ two- layer composite electrolyte films. Paper presented at the 5th Euroconference on Solid State Ionics, Benalmádena, Spain, Sept. 13–20, 1998  相似文献   

9.
Preparation of thin film SOFCs working at reduced temperature   总被引:1,自引:0,他引:1  
SOFCs are expected to become competitive devices for electrical power generation, but successful application is dependent on decreasing working temperature from 1000 to 800 °C, without detrimental effects on resistance and on electrode processes. This requires a reduction of the stabilised zirconia electrolyte thickness and an optimisation of the electrodes and interfaces. We have studied the preparation of a thin film SOFC device working at intermediate temperatures (less than 850 °C). The electrolyte must be very dense and as thin as possible to avoid ohmic losses. Electrodes, anode and cathode, must be porous enough to enable the gas fluxes to go through. Ni/YSZ cermet anodes have been prepared by a conventional ceramic method and support the cells. Thin Yttria Stabilised Zirconia electrolytes (YSZ) have been deposited by RF sputtering, DC sputtering and spray pyrolysis onto a Ni/YSZ cermet. Thin film La0.7Sr0.3MnO3 (LSM) cathodes have been deposited onto the electrolytes by a spray-pyrolysis method. We present here the preparation and the characterisation of each component and the electrochemical performance of such cells at 850 °C. Paper presented at the 5th Euroconference on Solid State Ionics, Benalmádena, Spain, Sept. 13–20, 1998.  相似文献   

10.
The objective of the present work is the development of a “built-in” potential electrode method for direct measurements of the cathode and anode overpotentials and the corresponding interface resistances of solid oxide fuel cells (SOFC). The studies were performed on a yttria-stabilised zirconia (YSZ) electrolyte-supported SOFC using La0.8Sr0.2MnO3 as cathode, GDC as protecting layer and Ni-ScSZ cermet as anode. The mesh potential electrode was placed inside the YSZ membrane near the cathode side. Using the combination of the I-U and the impedance measurements with the built-in potential electrode technique, the temperature dependencies of the electrodes and electrolyte contributions to the total cell resistance were determined.  相似文献   

11.
《Solid State Ionics》2006,177(35-36):3211-3216
Anode-supported SOFCs involving LSCF (La0.6Sr0.4Co0.2Fe0.8O3−δ)-based cathodes are fabricated utilizing GDC interlayer on 8YSZ electrolyte for intermediate temperatures. The GDC interlayer between the LSCF cathode and YSZ electrolyte is used to prevent formation of insulating phases such as SrZrO3 or La2Zr2O7. The cell performance with the GDC interlayer was ten times better than the one without GDC at operating temperature of 750 °C. However, the observed power density (370 mW/cm2) was lower than the value reported in the literature. This can be attributed to an imperfect GDC interlayer in the present study. The GDC interlayer was porous and non-uniform, so that adverse interfacial reactions could not be completely prevented. The chemical incompatibility at the interface was evaluated by SEM and EPMA, which explains the dependence of cell performance on sintering temperatures of the GDC interlayer.  相似文献   

12.
《Solid State Ionics》2006,177(19-25):1811-1817
Structural, electronic and transport properties of LFN (LaFe1−zNizO3) and LSCFN (La1−xSrxCo1−y zFeyNizO3) perovskites synthesized by a modified citric acid method were studied. Structure of the samples was characterized by X-ray studies with Rietveld method analysis. Magnetic properties and valence states of iron ions were characterized by 57Fe Moessbauer spectroscopy performed at RT, which were found to be greatly dependent on the chemical composition of the samples. Electrical conductivity was measured in the 20–800 °C temperature range and for some compositions relatively high values (exceeding 100 S cm 1) were observed in the 600–800 °C range. Chemical stability studies in relation to Ce0.8Gd0.2O1.9 electrolyte, performed for selected perovskite samples, revealed decreasing stability with increasing Ni concentration and formation of solid solutions in CGO/perovskite composites. The coefficient of thermal expansion (CTE) of LFN perovskites was found to match that of CGO electrolyte (CTE in the 10–13 · 10 6 K 1 range).  相似文献   

13.
《Solid State Ionics》2006,177(11-12):1059-1069
Lanthanum–aluminate-based oxides, (La0.8Sr0.2)1−yAl1−xMnxO3−δ (x = 0, 0.3, 0.5; y = 0 or 0.06) (LSAM), were synthesized and evaluated in detail as potential anode materials for solid oxide fuel cells (SOFCs). The electrical conductivity of LSAM (Mn  30 mol%) is dominated by p-type electronic conduction and can be treated as a diluted system of lanthanum manganites, (La,Sr)MnO3. At 810 °C, the electrical conductivity of (La0.8Sr0.2)0.94Al0.5Mn0.5O3−δ (LSAM8255b) reaches 12 S/cm in air and 2.7 S/cm in humidified Ar/4% H2 (p(O2)  10 18 bar). The thermal expansion coefficients of LSAM8255a and LSAM8255b match YSZ very well and no chemical reaction was observed between these two perovskite materials and YSZ up to at least 1400 °C. Fairly good electrochemical performance was observed for an LSAM8255b–YSZ composite anode. At 850 °C, the polarization resistances are only 0.34 and 0.50 Ω cm2 in wet (∼3% H2O) Ar/20% H2 and wet Ar/20% CH4, respectively. In addition, an exposure to Ar/20% CH4/3% H2O for 35 h did not cause any apparent carbon deposition on the electrode. However, the chemical stability of LSAM8255a and LSAM8255b in a typical anode environment under open circuit conditions does not seem sufficient, leading to performance degradation with time in wet Ar/20% H2 or wet Ar/20% CH4. Furthermore, relatively large chemical expansion (0.3–0.5%) was observed when the atmosphere was switched from air to wet Ar/4% H2, which might cause intolerable stress on the thin film electrolyte layer for a large-area anode-supported planar SOFC, but which might be tolerable for small geometries or electrolyte-supported SOFCs.  相似文献   

14.
At the present, a major technological challenge for the development of solid oxide fuel cells (SOFC) is the reduction of their operation temperature in order to reduce the costs and increase the fuel cell lifetime. Nevertheless, decrease in the operating temperature leads to losses in cell performance mainly due to the ohmic drop through the electrolyte. Therefore, several approaches are currently under investigation to overcome the electrolyte problem and the use of oxygen ion conductor thin films seems to be the most promising solution. In this respect, the well-known electrolyte CeO2-Gd2O3 (CGO) was investigated. Thin layers of less than 5 μm of CGO were deposited using two different techniques: RF magnetron sputtering and Atomic Layer Deposition (ALD). Physicochemical properties of the thin films obtained were characterised by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Furthermore, impedance measurements were carried out in order to determine the electrical properties of the CGO films, in particular their ionic conductivity. Paper presented at the 9th EuropConference on Ionics, Ixia, Rhodes, Greece, Sept. 15–21, 2002.  相似文献   

15.
《Solid State Ionics》2006,177(19-25):1965-1968
The time-dependent degradation of anode-supported Solid Oxide Fuel Cells (SOFCs) with La0.58Sr0.4Co0.2Fe0.8O3−δ (LSCF) cathodes has been studied. Eight SOFCs have been tested over a period of 1000 h under different operation conditions to investigate the influence of different operation parameters on the degradation of the electrochemical performance. The cells were tested at 700 or 800 °C, at 0.3 or 0.6 A/cm2 and with 21% or 5% O2 at the cathode side and showed performance losses of 2–4% per 1000 h. While an elevated temperature and an elevated oxygen partial pressure had a negative influence on long-term performance, the current density did not have a clear effect. Material analysis of the cells showed a formation of SrZrO3 at the interface of the Ce0.8Gd0.2O2−δ interlayer and the yttria stabilized zirconia (8YSZ) electrolyte during sintering of the cathode. There are indications of a further formation of this phase during the electrochemical characterization obtained from X-ray diffraction analysis on LSCF–YSZ powder mixtures that were exposed to 800 °C for 200 h.  相似文献   

16.
Nanostructured cathode thin films with vertically-aligned nanopores (VANP) were processed using a pulsed laser deposition technique (PLD). These VANP structures enhance the oxygen-gas phase diffusivity, thus improve the overall thin film SOFC performance. La0.5Sr0.5CoO3 (LSCO) and La0.4Sr0.6Co0.8Fe0.2O3 (LSCFO) were deposited on various substrates (YSZ, Si and pressed Ce0.9Gd0.1O1.95 disks). Microstructures and properties of the nanostructured cathodes were characterized by TEM, HRTEM, SEM and electrochemical measurements. Additionally these well-aligned VANP structures relieve or partially relieve the internal thermal stress and lattice strain caused by the differences of thermal expansion coefficients and lattice mismatch between the electrode and the electrolyte.  相似文献   

17.
《Solid State Ionics》2006,177(26-32):2297-2300
Simultaneous decomposition of nitrogen oxides (NOx) and solid state graphite particles were carried out using a 8 mol% Y2O3 doped ZrO2 (YSZ) based electrochemical reactor with a nano-structured NOx selective multilayer cathode and an oxidative porous anode. The ceramic electrochemical cell was prepared by screen-printing a Pt and a NiO–YSZ pastes as cathode layers and a 12 CaO7Al2O3–Pt paste as an anode layer on the YSZ electrolyte, respectively. Simultaneous decomposition of NOx and graphite particles was investigated using the cell with coated graphite particles on the surface of the 12 CaO7Al2O3–Pt composite anode in 1000 ppm NOx–He gas flow under applying DC voltage at 475 °C. The coated graphite particles at the anode were removed completely with 80% NOx decomposition by electrochemical reactions.  相似文献   

18.
《Solid State Ionics》2006,177(26-32):2513-2518
Ceria-based thin films are potential materials for use as gas-sensing layers and electrolytes in micro-solid oxide fuel cells. Since the average grain sizes of these films are on the nanocrystalline scale (< 150 nm), it is of fundamental interest whether the electrical conductivity might differ from microcrystalline ceria-based ceramics. In this study, CeO2 and Ce0.8Gd0.2O1.9−x thin films have been fabrication by spray pyrolysis and pulsed laser deposition, and the influence of the ambient average grain size on the total DC conductivity is investigated. Dense and crack-free CeO2 and Ce0.8Gd0.2O1.9−x thin films were produced that withstand annealing up to temperatures of 1100 °C. The dopant concentration and annealing temperature affect highly the grain growth kinetics of ceria-based thin films. Large concentrations of dopant exert Zener drag on grain growth and result in retarded grain growth. An increased total DC conductivity and decreased activation energy was observed when the average grain size of a CeO2 or Ce0.8Gd0.2O1.9−x thin film was decreased.  相似文献   

19.
Porous Ni-YSZ (YSZ—yttria-stabilized zirconia) films were fabricated by reactive co-sputtering of a Ni and a Zr-Y target, followed by sequentially annealing in air at 900 °C and in vacuum at 800 °C. The Ni-YSZ films comprised small grains and pores that were tens of nanometers in size. The porous Ni-YSZ films were used as an anode on one side of a YSZ electrolyte disc and a La0.7Sr0.3MnO3 thick film was used as a cathode on the other side of the disc to form solid oxide fuel cells (SOFCs). The voltage-current curves of the SOFCs with single- and a triple-layered porous anodes were measured in a single-chamber configuration, in a mixture of CH4 and air (CH4:O2 volume ratio=2:1). The maximum power density of the SOFC using the single-layered porous Ni-YSZ thin films as the anode was 0.38 mW cm−2, which was lower than that of 0.76 mW cm−2, obtained using a screen-printed Ni-YSZ thick anode. The maximum power density of the SOFC with a thin anode was increased, but varied between 0.6 and 1.14 mW cm−2 when a triple-layered porous Ni-YSZ anode was used.  相似文献   

20.
LSM(La(Sr)MnO3)/YSZ(Y2O3 stabilized ZrO2) composite cathode for Solid Oxide Fuel Cells (SOFCs) was fabricated by using the composite particle consisting of well-dispersed nano-size grains of LSM and YSZ. The composite cathode had a porous structure as well as uniformly dispersed fine LSM and YSZ grains. Such unique morphology of the composite cathode led high electrochemical activity at 800°C. It suggests that the intermediate temperature (less than 800°C) operation of SOFCs will be achieved by using composite particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号