首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel cationic cyclodextrin, mono-6A-(2-hydroxyethyl-1-ammonium)-6A-β-cyclodextrin chloride (HEtAMCD) has been successfully synthesized and applied as chiral selector in capillary electrophoresis. The NMR study revealed this chiral selector has three recognition sites: β-CD, ammonium cation and hydroxy group in the sidearm to contribute three corresponding driving forces including inclusion complexation, electrostatic interaction and hydrogen bonding. The effect of buffer pH and HEtAMCD concentration (2.5–10 mM) on enantioselectivity, chiral resolution as well as effective mobility of analytes was investigated. This elegantly designed CD exhibits outstanding enantioselectivities toward the studied hydroxyl acids and ampholytic racemates in CE with the aid of extra hydrogen bonding. Under optimum pH 6.0, chiral resolutions over 5 can be readily obtained for hydroxy acids with CD concentration below 5 mM. The comparison study between HEtAMCD and our earlier reported ammonium CDs indicates the hydroxyethylammonium group of HEtAMCD significantly increased the enantioselective capability.  相似文献   

2.
The separation of racemic derivatized amino acids (N-acetyl) into their enantiomers was achieved using capillary zone electrophoresis employing vancomycin as a chiral selector. Due to the strong absorption properties of the chiral selector at the low wavelengths used, the partial-filling countercurrent method was adopted in order to improve method sensitivity. In the separation system studied, the chiral selector filled only a part of the capillary and, due to the appropriate selection of the pH, was moving in the opposite direction of the analytes keeping the detector free from absorbing compounds. The effect of several experimental parameters on the enantioresolution of analytes was studied, e.g., vancomycin concentration (0-5 mM), pH of the background electrolyte (pH 4-7), capillary temperature (15-35 degrees C), and the presence of an organic modifier in the run buffer (methanol or ethanol or n-propanol). N-Acetyl glutamic acid, serine, cystine, tyrosine, and proline were all baseline-resolved into their enantiomers and the enantioresolution factor (R(s)) was increased by raising the vancomycin concentration. pH 4 allowed the baseline resolution of the five studied analytes in the presence of 2.5 mM of chiral selector and an increase in pH caused a decrease of R(s).  相似文献   

3.
We investigated the simultaneous chiral separation of nine amphetamine type stimulants (dl-norephedrine, dl-norpseudoephedrine, dl-ephedrine, dl-pseudoephedrine, dl-amphetamine, dl-methamphetamine, dl-methylenedioxyamphetamine (MDA), dl-methylenedioxymethamphetamine (MDMA), and dl-methylenedioxyethylamphetamine (MDEA)) by capillary electrophoresis using highly sulfated gamma-cyclodextrin (SU(XIII)-gamma-CD) as a chiral selector. Three different approaches using SU(XIII)-gamma-CD with 50 mM phosphate background electrolyte were designed; (I) high CD concentration (10 mM SU(XIII)-gamma-CD) at neutral pH (pH 7.0) in the normal polarity mode, (II) low CD concentration (1.0 mM) at low pH (pH 2.6) in the normal polarity mode and (III) high CD concentration at low pH (pH 2.6) in the reversed-polarity mode. In mode (II), the effects of adding three neutral CDs (beta-CD, dimethyl-beta-CD and hydroxypropyl-beta-CD) were also investigated. The best separation was obtained after optimizing mode (III) as follows: run buffer of 10 mM SU(XIII)-gamma-CD with 50 mM phosphate background electrolyte at pH 2.6, applied voltage of -12 kV and capillary temperature of 15 degrees C.  相似文献   

4.
The chiral resolving ability of a novel single-isomer cationic β-cyclodextrin (CD), mono-6A-propylammonium-6A-deoxy-β-cyclodextrin chloride (PrAMCD), as a chiral selector in capillary electrophoresis (CE) is reported in this work for the enantioseparation of hydroxy, carboxylic acids and amphoteric analytes. The effect of chiral selector concentration on the resolution was studied. Good resolutions were achieved for hydroxy acids. Optimum resolutions were obtained even at 3.5 mM CD concentration for carboxylic acids. The electrophoretic method showed good linearity and reproducibility in terms of migration times and peak areas, which should make it suitable for routine analysis. In addition, baseline chiral separation of a six-acid mixture was achieved within 20 min. PrAMCD proved to be an effective chiral selector for acidic analytes.  相似文献   

5.
Lee D  Shamsi SA 《Electrophoresis》2002,23(9):1314-1319
Enantiomeric separations of six anionic and two neutral racemates were achieved using a fully substituted heptakis(6-hydroxyethylamino-6-deoxy)-beta-cyclodextrin (beta-CD-EA) as a chiral selector. As beta-CD-EA provides a dynamic coating on the capillary wall, reverse-polarity capillary electrophoresis (CE) configuration is applied for separations of anionic and neutral chiral compounds. Chiral separations of various classes of anionic and neutral enantiomers were found to be highly dependent on pH because the degree of protonation of beta-CD-EA can alter the shape of the CD cavity by charge repulsion, altering complexation, aiding selectivity, and leading to better enantiomeric separation. In general, the chiral resolution of anionic enantiomers was enhanced at higher pH. This suggests that carboxylate or phosphate groups on the analyte may interact with the protonated amine groups of cationic CD. The successful enantioseparation was achieved in a pH range of 6.6-7.8 for all six anionic analytes, in the presence of 10 mM beta-CD-EA.  相似文献   

6.
Summary 3-[(3-cholamidopropyl)-dimethylammoniol-1-propane sulfonate (CHAPS) can be used as an effective chiral selector for the separation of dansyl-amino acids by capillary electrophoresis (CE). While CHAPS can serve as an chiral selector, better enantiomeric separation can be performed by using CHAPS not as the sole chiral selector but as one of a [CHAPS-SDS-cyclodextrin] three-component system. In this CHAPS-SDS-CD system, enantiomeric separations of the amino acids can be readily accomplished by judiciously adjusting the pH of the solution, concentrations of CHAPS and SDS, and the concentration and type of CD. All amino acids can be baseline resolved in less than 15 minutes with resolution as high as 2.01 at pH 6.5 with 50 mM of CHAPS and 75 mM of SDS. The resolution is also dependent on the size of the CD. Substantial increase in the resolution can be readily achieved by replacing β-CD with γ-CD. For example, theR s for Leu was increased by four-folds (from 1.65 to 6.29) while the elution time still remains as short as 20 min when β-CD was replaced by γ-CD.  相似文献   

7.
Various chiral selectors have been employed in CE and among them linear polysaccharides exhibited powerful enantioselective properties. Different from linear polysaccharides, the use of branched polysaccharides as chiral selectors in CE has not been reported previously. In this study glycogen belonging to the class of branched polysaccharides was used as a novel chiral selector for the enantiomeric separations for the first time. Since glycogen is electrically neutral, the method is applicable to ionic compounds. Eighteen chiral compounds including 12 basic drugs and six acidic drugs have been tested to demonstrate the potential of this chiral selector. BGE and selector concentrations and buffer pH were systematically optimized in order to obtain successful chiral separations. Among the tested compounds, the enantiomers of ibuprofen, which is an acidic drug, were successfully recognized by 3.0% w/v glycogen with 90 mM Tris‐H3PO4 buffer (pH 7.0). The enantiomers of basic drugs such as citalopram, cetirizine and nefopam were also baseline‐resolved with 50 mM Tris‐H3PO4 buffer (pH 3.0) containing 3.0% glycogen. Amlodipine belonging to basic compound only gave partial enantioseparation under the above‐mentioned condition.  相似文献   

8.
Tang W  Muderawan IW  Ong TT  Ng SC 《Electrophoresis》2005,26(16):3125-3133
A novel single-isomer positively charged beta-cyclodextrin (beta-CD), mono-6(A)-butylammonium-6(A)-deoxy-beta-cyclodextrin tosylate (BuAM-beta-CD), has been synthesized, characterized, and used for the enantioseparations of alpha-hydroxy acids, carboxylic acids, and ampholytic analytes by capillary electrophoresis in acidic aqueous background electrolytes. The effective mobilities of all studied analytes decreased with increasing concentration of CD. Satisfactory resolutions were obtained for alpha-hydroxy acids over a wide range of chiral selector concentration. The optimum CD concentration was lower than 5 mM for the carboxylic acids, while higher than 20 mM for alpha-hydroxy acids. Inclusion complexation in combination with ion pair interaction seemed to account for the chiral discrimination process. The hydrogen bonding may provide secondary contribution for the chiral resolution of alpha-hydroxy acids. In addition, BuAM-beta-CD was further proved to be an effective chiral selector for anionic analytes by the baseline enantioseparation of a six-acid mixture within 20 min.  相似文献   

9.
This paper describes an improved access to mono‐6A‐aminoethylamino‐β‐CD (β‐CDen), a very efficient cationic chiral selector for CZE in the separation of eight chiral aromatic vicinal diols. The β‐CDen concentration has a strong influence on the efficiency of enantioseparation. The effects of the pH and concentration of the BGE, the capillary temperature, and the applied voltage on the resolution and separation selectivity have been studied. Excellent chiral resolution was achieved under the optimal conditions of β‐CDen 10 mM, pH 10, 200 mM borate buffer at 15 kV and 20°C within 20 min. Moreover, the developed method was successfully applied to the determination of the enantiomeric purity of the catalytic asymmetric dihydroxylation (AD) reaction products.  相似文献   

10.
A new capillary electrophoretic method for the chiral separation of four major Cinchona alkaloids (quinine/quinidine and cinchonine/cinchonidine) was developed using heptakis-(2,6-di-O-methyl)-beta-cyclodextrin as the chiral selector. The inner walls of the separation capillary were modified with a thin polyacrylamide layer, which substantially reduced the electroosmotic flow and improved the chiral resolution and the reproducibility of the migration time of the analytes. Various operation parameters were optimised, including the pH, the capillary temperature, the concentration of the background electrolyte, and the concentration of the chiral selector. Baseline separation of the two diastereomer pairs was achieved in 12 minutes in ammonium acetate background electrolyte pH 5.0 with addition of cyclodextrin in a concentration of 3 mM or higher.  相似文献   

11.
A novel chiral selector, clindamycin succinate, was synthesized and first used as a chiral selector in capillary electrophoresis (CE). The chiral resolution ability of this kind of clindamycin derivation was studied by CE using some racemic drugs as model analytes. From the experimental results, it was found that both resolution and selectivity of the selector were dependent on the following parameters: concentration of chiral selectors, pH of the running buffer, temperature of the capillary column, applied voltage and organic modifier used. The results show that the chiral selector possesses high resolution toward some racemic drugs, including ofloxacin, chlorphenamine, tryptophan, propranolol, sotalol and metoprolol. Excellent chiral resolution of these tested drugs was achieved under the optimal conditions of 50 mM clindamycin succinate, 10% MeOH v/v, 50 mM Tris buffer, pH 4.0, at 22 kV and 20 °C within 25 min.  相似文献   

12.
Separation of etodolac enantiomers, which exhibit different biological activity and pharmacokinetic profiles, has been achieved using the randomly substituted (2-hydroxy)propyl-beta-cyclodextrin (HP-beta-CD) as chiral selector in capillary electrophoresis. The selection of this CD was made after screening of different CD derivatives of neutral and anionic nature. The effect on the enantioresolution of the buffer concentration and of the degree of substitution (DS) and concentration of the CD as well as of instrumental parameters, such as the capillary temperature and the separation voltage, were studied. The highest resolution of etodolac enantiomers was around 2.5 using 100 mM phosphate buffer (pH 7.0) with 20 mM HP-beta-CD (DS approximately 4.2) and UV detection at 225 (10) nm with a reference wavelength at 360 (50) nm. Validation of the chiral method in terms of selectivity, linearity, precision (instrumental repeatability, method repeatability, intermediate precision), and the limits of detection and quantitation allowed to evaluate its quality to the analysis of etodolac enantiomers in different pharmaceutical preparations containing racemic etodolac.  相似文献   

13.
Lin X  Zhu C  Hao A 《Electrophoresis》2005,26(20):3890-3896
The resolving ability of 2-O-(2-hydroxybutyl)-beta-CD (HB-beta-CD) with different degrees of substitution (DS = 2.9 and 4.0) as a chiral selector in CZE is reported in this work. Fourteen chiral drugs belonging to different classes of compounds of pharmaceutical interest such as beta-agonists, antifungal agents, ageneric agents, etc., were resolved. The effects of the DS of HB-beta-CD on separations were also investigated. The chiral resolution (R(s)) was strongly influenced by the concentrations of the CD derivative, the BGE, and the pH of the BGE. Under the conditions of 50 mmol/L Tris-phosphate buffer at pH 2.5 containing 5 mmol/L HB-beta-CD, all 14 analytes were separated. The very low concentration necessary to obtain separation was particularly impressive. The DS had a significant effect on the resolution of the chiral drugs and the ionic strength of the separation media; hence, the use of a well-characterized CD derivative is crucial.  相似文献   

14.
New single‐isomer, cationic β‐cyclodextrins, including mono‐6‐deoxy‐6‐pyrrolidine‐β‐cyclodextrin chloride (pyCDCl), mono‐6‐deoxy‐6‐(N‐methyl‐pyrrolidine)‐β‐cyclodextrin chloride (N‐CH3‐pyCDCl), mono‐6‐deoxy‐6‐(N‐(2‐hydroxyethyl)‐pyrrolidine)‐β‐cyclodextrin chloride (N‐EtOH‐pyCDCl), mono‐6‐deoxy‐6‐(2‐hydroxymethyl‐pyrrolidine)‐β‐cyclodextrin chloride (2‐MeOH‐pyCDCl) were synthesized and used as chiral selectors in capillary electrophoresis for the enantioseparation of carboxylic and hydroxycarboxylic acids and dansyl amino acids. The unsubstituted pyCDCl exhibited the greatest resolving ability. Most analytes were resolved over a wide range of pH from 6.0 to 9.0 with this chiral selector. In general, increasing pH led to a decrease in resolution. The effective mobilities of all the analytes were found to decrease with increasing CD concentration. The optimal concentration for most carboxylic acids and dansyl amino acid was in the range 5–7.5 mM and >15 mM for hydroxycarboxylic acids. 1H NMR experiments provided direct evidence of inclusion in the CD cavity.  相似文献   

15.
Zhou L  Lin Z  Reamer RA  Mao B  Ge Z 《Electrophoresis》2007,28(15):2658-2666
Optical pure (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid, a chiral crown ether, was successfully used as a chiral selector for the stereoisomeric separation of numerous real pharmaceutical compounds. Both practical and mechanistic aspects were described. Effects of chiral selector concentration under different pH values of BGE were discussed. Chiral recognition for the enantiomeric compounds with (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid was investigated through model compounds using CE and infrared spectroscopic techniques. Relations between the enantioselectivity of the chiral crown ether and the structural features of the studied compounds were also investigated. Unusual resolutions of compound-p and its enantiomer as well as compound-o and its 2b epimer were described. These compounds contained only tertiary amine, believed to be nonbinding with crown ethers in general. The possible mechanisms for the interaction between compound-o and the chiral crown ether were investigated using CE, electrospray MS (ESI-MS), and proton ((1)H) NMR spectroscopy. All experiments provided clear evidence that binding between compound-o and the chiral crown ether had occurred. ESI-MS spectra indicated that the complexes had a 1:1 stoichiometric ratio. The advantages and disadvantages of using chiral crown ether for stereoisomeric separations were compared with those using sulfated CDs.  相似文献   

16.
The enantiomeric separation of gemfibrozil chiral analogues was performed by capillary zone electrophoresis (CZE). Resolution of the enantiomers was achieved using heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin (TM-beta-CD) as chiral selector dissolved into a buffer solution. In order to optimize the separation conditions, type, pH and concentration of running buffer and chiral selector concentration were varied. For each pH value, the optimum chiral selector concentration that produced the resolution of the isomers was found. The migration order of labile diastereoisomers formed was valued at the optimum experimental conditions by adding a pure optical isomer to the racemic mixture. Data from 1H NMR studies confirmed host-guest interaction between TM-beta-CD and 5-(2,5-dimethylphenoxy)-2-ethylpentanoic acid sodium salt. The hypothesized stoichiometry host:guest was 1:1. An apparent equilibrium constant (Ka) was estimated monitoring the chemical shift variation as a function of TM-beta-CD concentration. Salt effect on complexation equilibrium constant was also investigated.  相似文献   

17.
In this study, the applicability of a chiral ionic liquid (CIL) as the sole chiral selector in CE was investigated for the first time. In particular, five amino acid ester‐based CILs were synthesized and used as additives in the BGE in order to evaluate their chiral recognition ability. The performance of these CILs as the sole chiral selectors was evaluated by using 1,1′‐binaphthyl‐2,2‐diylhydrogenphosphate (BNP) as the analyte and by comparing the resolution values. Different parameters were examined, such as the alkyl group bulkiness and the configuration of the cation, the anion type of the CIL and its concentration, and the pH of the BGE, in order to optimize the separation of the enantiomers and to demonstrate the effect that each parameter has on the chiral‐recognition ability of the CIL. Baseline separation of BNP within 13 min was achieved by using a BGE of 100 mM Tris/10 mM sodium tetraboratedecahydrate (pH 8) and a chiral selector of 60 mM l ‐alanine tert butyl ester lactate. The run‐to‐run and batch‐to‐batch reproducibilities were also evaluated by computing the %RSD values of the EOF and the two enantiomer peaks. In both cases, very good reproducibilities were observed, since all %RSD values were below 1%.  相似文献   

18.
Glycopeptide antibiotics, namely vancomycin or teicoplanin, were evaluated in capillary electrophoresis for the analysis of UV nonabsorbing compounds such as aspartic and glutamic acid enantiomers. Electrophoretic runs were performed in laboratory-made polyacrylamide-coated capillaries using the partial filling-counter current method in order to avoid the presence on the detector path of the absorbing chiral selector. The background electrolyte consisted of an aqueous or aqueous-organic buffer in the pH range of 4.5-6.5 of sorbic acid/histidine and the appropriate concentration of chiral selector. Several experimental parameters such as antibiotic concentration and type, buffer pH, organic modifier, type and concentration of absorbing co-ion (for the indirect UV detection) were studied in order to find the optimum conditions for the chiral resolution of the two underivatized amino acids in their enantiomers. Among the two investigated chiral selectors, vancomycin resulted to be the most useful chiral selector allowing relatively high chiral resolution of the studied compounds even at low concentration. The optimized method (10 mM sorbic acid/histidine, pH 5, and 10 mM of vancomycin) was used for the analysis of real samples such as teeth dentine and beer.  相似文献   

19.
Six reducing monosaccharides (mannose, galactose, fucose, glucose, xylose, and arabinose) were derivatized with 8-aminonaphthalene-1,3,6-trisulfonate (ANTS). Based on the chiral ligand-exchange principle using borate as a central ion of the chiral selector and (S)-3-amino-1,2-propanediol (SAP) as a chiral selector ligand, all of the six ANTS-monosaccharides were simultaneously enantioseparated using absorbance at 245 nm for detection. The optimum conditions for both high resolution and moderately short migration time consisted of 200 mM SAP-200 mM borate buffer (pH 9.2) containing 10% ACN as a BGE at 30 degrees C with an applied voltage of +30 kV. It was revealed that the proposed chiral ligand-exchange CE using the SAP-borate system was applicable to enantioseparation of not only diols but also polyols.  相似文献   

20.
Lin CE  Lin SL  Fang IJ  Liao WS  Chen CC 《Electrophoresis》2004,25(16):2786-2794
We investigated the enantioseparations of racemic hydrobenzoin, together with benzoin and benzoin methyl ether, in capillary electrophoresis (CE) using the single-isomer heptakis(2,3-dihydroxy-6-O-sulfo)-beta-cyclodextrin (SI-S-beta-CD) as a chiral selector in the presence and absence of borate complexation and enantiomer migration reversal of hydrobenzoin with a dual CD system consisting of SI-S-beta-CD and beta-CD in the presence of borate complexation at pH 9.0 in a borate buffer. The enantioselectivity of hydrobenzoin increased remarkably with increasing SI-S-beta-CD concentration and the enantioseparation depended on CD complexation between hydrobenzoin-borate and SI-S-beta-CD. The (S,S)-enantiomer of hydrobenzoin-borate complexes interacted more strongly than the (R,R)-enantiomer with SI-S-beta-CD. The enantiomers of hydrobenzoin could be baseline-resolved in the presence of SI-S-beta-CD at a concentration as low as 0.1% w/v, whereas the three test analytes were simultaneously enantioseparated with addition of 0.3% w/v SI-S-beta-CD or at concentrations >2.0% w/v in a borate buffer and 0.5% w/v in a phosphate background electrolyte at pH 9.0. Compared with the results obtained previously using randomly sulfated beta-CD (MI-S-beta-CD) in a borate buffer, enantioseparation of these three benzoin compounds is more advantageously aided by SI-S-beta-CD as the chiral selector. The enantioselectivity of hydrobenzoin depended greatly on the degree of substitution of sulfated beta-CD. Moreover, binding constants of the enantiomers of benzoin compounds to SI-S-beta-CD and those of hydrobenzoin-borate complexes to SI-S-beta-CD were evaluated for a better understanding of the role of CD complexation in the enantioseparation and chiral recognition. Enantiomer migration reversal of hydrobenzoin could be observed by varying the concentration of beta-CD, while keeping SI-S-beta-CD at a relatively low concentration. SI-S-beta-CD and beta-CD showed the same chiral recognition pattern but they exhibited opposite effects on the mobility of the enantiomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号