首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Micrometer-sized, hemispherical polystyrene (PS) particles were successfully prepared by microsuspension polymerization of homogeneous styrene/hexadecane (HD) droplets dispersed in polyoxyethylene nonylphenyl ether (Emulgen 931) aqueous solution, followed by rapid removal of HD from formed PS/HD particles with a “Janus” structure. It was important for the formation of the morphology of Janus particles in thermodynamically stable state to carry out the polymerization slowly. The formation of by-product small PS particles by emulsion polymerization was suppressed by the additions of CuCl2 as a water-soluble inhibitor and NaCl to decrease the solubility of styrene in the aqueous phase.  相似文献   

2.
Micron-sized polystyrene or PS particles were first prepared by dispersion polymerization. Then a series of polystyrene/poly(styrene-2-hydroxyethyl methacrylate) or PS/P(S-HEMA) composite polymer particles was prepared by seeded copolymerization using different amounts of 2-hydroxyethyl methacrylate (HEMA) at the constant core/shell ratio of 1/0.5. The produced PS seed and composite polymer particles were characterized by transmission electron microscopy. Adsorption behaviors of some biologically active macromolecules were studied under similar conditions. In each case the magnitude of adsorption on composite polymer particles decreased with the increase in HEMA content in the recipe, which means that the hydrophobic interaction between the surface of the particles and biomolecules decreased. The specific activities of trypsin aqueous solution and adsorbed trypsin on PS seed and composite polymer particles prepared with different HEMA contents were also measured and compared. The activity of adsorbed trypsin on composite polymer particles improved significantly with the incorporation of hydrophilic HEMA.  相似文献   

3.
In this study, we describe a new strategy for producing narrowly dispersed functional colloidal particles stabilized by a nanocomposite with hydrophilic clay faces and hydrophobic polystyrene (PS) brushes on the edges. This method involves preparation of polymer brushes on the edges of clay layers and Pickering suspension polymerization of styrene in the presence of the nanocomposites. PS brushes on the edges of clay layers were prepared by atom transfer radical polymerization. X‐ray diffraction and thermogravimetric analysis results indicated that PS chains were grafted to the edges of clay platelets. Transmission electron microscope results showed that different morphologies of clay‐PS particles could be obtained in different solvents. In water, clay‐PS particles aggregated together, in which PS chains collapsed forming nanosized hydrophobic domains and hydrophilic clay faces stayed in aqueous phase. In toluene, clay‐PS particles formed face‐to‐face structure. Narrowly dispersed PS colloidal particles stabilized by clay‐PS were prepared by suspension polymerization. Because of the negatively charged clay particles on the surface, the zeta potential of the PS colloidal particles was negative. Positively charged poly(2‐vinyl pyridine) (P2VP) chains were adsorbed to the surface of PS colloidal particles in aqueous solution at a low pH value, and gold nanoparticles were prepared in P2VP brushes. Such colloidal particles may find important applications in a variety of fields including waterborne adhesives, paints, catalysis of chemical reactions, and protein separation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1535–1543, 2009  相似文献   

4.
Summary: Submicron-sized monodisperse PS particles were prepared by dispersion polymerization of styrene in ionic liquids with poly(vinylpyrrolidone) as stabilizer. Seeded dispersion polymerization of MMA was subsequently carried out with PS seeds in [Bmim][BF4] to prepare PS/PMMA composite particles. Observation of the obtained particles of ultrathin cross-sections with a scanning and transmission electron microscope revealed that no secondary nucleation occurred during the seeded dispersion polymerization and that the particles have a core-shell morphology consisting of a PS core and a PMMA shell. Successful preparation of PS/PMMA composite particles in an ionic liquid has thus been demonstrated. Moreover, PS/PAA (PS-core/PAA-shell) composite particles were prepared by seeded dispersion polymerization in [DEME][TFSI], illustrating that hydrophobic/hydrophilic composite particles can be readily prepared in the ionic liquid.  相似文献   

5.
A range of near-monodisperse, multimicrometer-sized polymer particles has been coated with ultrathin overlayers of polypyrrole-palladium (PPy-Pd) nanocomposite by chemical oxidative polymerization of pyrrole using PdCl(2) as an oxidant in aqueous media. Good control over the targeted PPy-Pd nanocomposite loading is achieved for 5.2 μm diameter polystyrene (PS) particles, and PS particles of up to 84 μm diameter can also be efficiently coated with the PPy-Pd nanocomposite. The seed polymer particles and resulting composite particles were extensively characterized with respect to particle size and size distribution, morphology, surface/bulk chemical compositions, and conductivity. Laser diffraction studies of dilute aqueous suspensions indicate that the polymer particles disperse stably before and after nanocoating with the PPy-Pd nanocomposite. The Fourier transform infrared (FT-IR) spectrum of the PS particles coated with the PPy-Pd nanocomposite overlayer is dominated by the underlying particle, since this is the major component (>96% by mass). Thermogravimetric and elemental analysis indicated that PPy-Pd nanocomposite loadings were below 6 wt %. The conductivity of pressed pellets prepared with the nanocomposite-coated particles increased with a decrease of particle diameter because of higher PPy-Pd nanocomposite loading. "Flattened ball" morphologies were observed by scanning/transmission electron microscopy after extraction of the PS component from the composite particles, which confirmed a PS core and a PPy-Pd nanocomposite shell morphology. X-ray diffraction confirmed the production of elemental Pd and X-ray photoelectron spectroscopy studies indicated the existence of elemental Pd on the surface of the composite particles. Transmission electron microscopy confirmed that nanometer-sized Pd particles were distributed in the shell. Near-monodisperse poly(methyl methacrylate) particles with diameters ranging between 10 and 19 μm have been also successfully coated with PPy-Pd nanocomposite, and stable aqueous dispersions were obtained. The nanocomposite particles functioned as an efficient catalyst for the aerobic oxidative homocoupling reaction of 4-carboxyphenylboronic acid in aqueous media for the formation of carbon-carbon bonds. The composite particles sediment in a short time (相似文献   

6.
Micrometer-sized, hemispherical polymer particles were prepared as a result of cleavage of spherical Janus poly(methyl methacrylate) (PMMA)/polystyrene (PS) composite particle by treating particles with acetone/water solutions. The original PMMA/PS composite particles were prepared by the slow evaporation of toluene from homogeneous PMMA/PS/toluene droplets dispersed in aqueous solution of sodium dodecyl sulfate in advance. Appropriate molecular weights of PMMA and PS were necessary for occurrence of the cleavage of the Janus composite particle, resulting in PMMA and PS hemispherical particles. The cleavage depended on the composition of the acetone/water solution, which was explained by selective solvent absorption into the polymer phases. The results strongly support the cleavage mechanism of Janus composite polymer particles that had been proposed earlier.  相似文献   

7.
Surfactant-stabilized polystyrene (PS) latex particles with a mean hydrodynamic diameter of 155 nm were prepared by aqueous emulsion polymerization using 2,2'-azobis(2-amidinopropane) hydrochloride as a cationic radical initiator. Seeded aqueous emulsion copolymerizations of 2-(dimethylamino)ethyl methacrylate (DMA) and ethylene glycol dimethacrylate (EGDMA) were conducted in the presence of these PS particles to produce two batches of colloidally stable core-shell latex particles, in which the shell comprised a cross-linked P(DMA-stat-EGDMA) overlayer. Both the PS and PS/P(DMA-stat-EGDMA) latexes were characterized in terms of their particle size, morphology, and composition using dynamic light scattering, electron microscopy, and FT-IR spectroscopy, respectively. Using the PS/P(DMA-stat-EGDMA) latex particles as a pH-responsive particulate ('Pickering'-type) emulsifier, polydisperse n-dodecane-in-water emulsions were prepared at pH 8 that could be partially broken (demulsified) on lowering the solution pH to 3. These emulsions were characterized in terms of their emulsion type, mean droplet diameter, and morphology using electrical conductivity and Mastersizer measurements, optical microscopy, and scanning electron microscopy (using critical point drying for sample preparation).  相似文献   

8.
Poly(methyl methacrylate) (PMMA)–polystyrene (PS) composite polymer particles were synthesized in the presence of a surfactant by two‐stage seeded emulsion polymerization. The first stage was the synthesis of PMMA particles by soapless emulsion polymerization; the second stage was the synthesis of the PMMA–PS composite polymer particles with the PMMA particles as seeds. In the second stage of the reaction, three kinds of surfactants—sodium laurate sulfate (SLS), polyoxyethylene (POE) sorbitan monolaurate (Tween 20), and sorbitan monolaurate (Span 20)—were used to synthesize the PMMA–PS composite particles. Both the properties and concentrations of the surfactants influenced the morphology of the composite particles significantly. Core–shell composite particles, with PS as the shell and PMMA as the core, were synthesized in the presence of a low concentration of the hydrophilic surfactant SLS. This result was the same as that in the absence of the surfactant. However, a low concentration of Tween 20 led to composite particles with a core/strawberry‐like shell morphology; the core region was a PS phase, and the strawberry‐like shell was a PS phase dispersed in a PMMA phase. With an increase in the concentration of SLS, the morphology of the composite particles changed from core (PMMA)–shell (PS) to core (PS)–shell (PMMA). Moreover, the effects of a high concentration of Tween 20 or Span 20 on the morphology of the PMMA–PS composite particles were investigated in this study. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2224–2236, 2005  相似文献   

9.
Micrometer-sized, hemispherical particles were successfully prepared as a result of the cleavage of Janus PMMA/PS composite particles by dispersion into acetone/water (9/1-10/0 v/v) media or a THF/water (8/2 v/v) medium. The spherical composite particles having a Janus structure were prepared by the slow evaporation of toluene from homogeneous PMMA/PS/toluene droplets dispersed in an aqueous medium in advance. It was clarified that the difference in affinity between PMMA and PS phases with respect to the media caused the cleavage of the composite particles. This method is expected to be a novel approach to the preparation of nonspherical polymer particles.  相似文献   

10.
 Micron-sized mono-dispersed polystyrene (PS)/poly(n-butyl methacrylate) (PBMA) composite particles (PS/PBMA=2/1 by weight) having a heterogeneous structure in which many fine PBMA domains dispersed in a PS matrix near the particle surface were produced by seeded polymerization of n-butyl methacrylate (BMA) of which almost all had been absorbed by 1.8 μm-sized monodispersed PS seed particles utilizing the dynamic swelling method. The morphology was varied by changing the PS/BMA ratio and polymerization temperature. It was concluded that the swelling state of 2 μm-sized BMA-swollen PS particles in the seeded polymerization process is one of the important factors to control the morphology of the composite particles. Received: 27 November 1996 Accepted: 21 March 1997  相似文献   

11.
Herein we describe a new strategy for producing micelles with mixed coronal chains. This method involves attachment of an atom transfer radical polymerization (ATRP) initiator at the interface of a micelle and preparation of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes at the interface by a "grafting from" method. Poly(ethylene glycol)- block-polystyrene (PEG- b-PS) diblock copolymer was achieved by ATRP. After the sulfonation reaction PS blocks were partly sulfonated. In aqueous solution at low pH the sulfonated block copolymer self-assembled into micelles with PS cores and PEG coronae and sodium 4-styrenesulfonate groups were distributed at the interfaces of the micelles. An ATRP initiator consisting of a quaternary ammonium salt moiety and a 2-bromo-2-methyl propionate moiety was ion exchanged onto the interface of the micelle. ATRP of DMAEMA was initiated at the interface, and micelles with PEG/PDMAEMA mixed coronal chains were prepared by ATRP. The structures of the micelles were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and zeta potential measurements. The size and morphology of the micelles were controlled by pH in aqueous solution. At high pH, PDMAEMA brushes collapse, forming nanodomains on the surface of the micelles. PDMAEMA brushes in the coronae of the micelles could be used as a template for preparation of gold nanoparticles.  相似文献   

12.
 Monodispersed polystyrene (PS)/poly(n-butyl methacrylate) (PBMA) composite particles having 9.4 μm in diameter were produced by seeded polymerization for the dispersion of highly n-butyl methacrylate (BMA)-swollen PS particles, and their morphologies were examined. The highly BMA-swollen PS particles (about 150 times the weight of the PS seed particles) were prepared by mixing monodispersed 1.8 μm-sized PS seed particles and 0.7 μm sized BMA droplets prepared with an ultrasonic homogenizer in ethanol/water (1/2, w/w) medium at room temperature. After NaNO2 aqueous solution as inhibitor was added in the dispersion, the seeded polymerization was carried out at 70 °C. In an optical microscopic observation, one or two spherical high contrast regions which consisted mainly of PS were observed inside PS/PBMA composite particles. In the PS domain, there were many fine spherical PBMA domains. Such morphologies were based on the phase separation of PS and PBMA within the homogeneous swollen particles during the seeded polymerization. Received: 04 June 1997 Accepted: 27 August 1997  相似文献   

13.
Samples of low-molecular-weight polystyrene (PS) in poly(methyl methacrylate) (PMMA) were prepared by first dissolving PS in methyl methacrylate monomer and then polymerizing the monomer. Forty-three specimens of varying number-average molecular weight (2100–49,000) and composition (5–40 wt %) of PS were prepared, and the surface morphology and phase relationships studied by scanning electron microscopy. Four distinct types of phase relationships were observed: (i) a single phase consisting of PS dissolved in PMMA; (ii) PS dispersed in PMMA; (iii) PMMA dispersed in PS; and (iv) regions of PS dispersed in PMMA coexisting with regions of PMMA dispersed in PS. Values of the size and population density of the dispersed particles are reported. Finally, the size and distribution of the dispersed particles and the various types of phase relationships are discussed in terms of the ternary polystyrene/poly(methyl methacrylate)/methyl methacrylate phase diagram.  相似文献   

14.
 Micron-sized, monodispersed polystyrene (PS)/poly (n-butyl methacrylate) (PBMA) composite particles, in which the PS domain(s) were dispersed in a PBMA continuous phase, were produced by seeded polymerization for dispersions of n-butyl methacrylate (BMA) swollen PS particles in a wide range of PS/BMA ratios in the presence of NaNO2 as a water-soluble inhibitor. Moreover, in order to change the diameter of the composite particles at same PS/BMA ratio, PS/PBMA (1/150 w/w) composite particles were produced using five kinds of PS particles in a range of diameters from 0.64 to 3.27 μm as seeds. The percentages of the PS/PBMA composite particles having double and triple and over PS domains, which were thermodynamically unstable morphologies, increased with the increase in the diameter of BMA swollen PS particles. There was a clear influence of the size of the swollen particles on the morphology of the PS/PBMA composite particles produced. Received: 30 September 1999/Accepted: 18 April 2000  相似文献   

15.
Stimuli‐responsive macroazoinitiators with central azo unit have been synthesized by atom transfer radical polymerization (ATRP) of 2‐(dimethylamino)ethyl methacrylate or 2‐(diethylamino)ethyl methacrylate in 2‐propanol at 25 °C. The mean degree of polymerization of the polymer chains besides the azo group was fixed between 25 and 60. 1H NMR, gel permeation chromatography, UV‐Vis spectrophotometer, and surface tensiometer were used to characterize the stimuli‐responsive macroazoinitiators in terms of their chemical structure, molecular weight, polydispersity, and pH‐responsive behavior, respectively. Eventually, dispersion polymerization of styrene using the poly[2‐(diethylamino)ethyl methacrylate] (PDEA) macroazoinitiator as an inistab (initiator + stabilizer) in 2‐propanol medium was conducted. Near‐monodisperse 98 nm polystyrene (PS) latex particles with pH‐responsive PDEA hair were successfully synthesized. The PS latex particles with the PDEA hair can be dispersed in acidic aqueous media where the PDEA hair was protonated and was solvated, and can be flocculated in basic aqueous media where the PDEA hair was deprotonated and was precipitated. This dispersion‐flocculation cycle was reversible. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3431–3443, 2009  相似文献   

16.
Materials with Janus structures are attractive for wide applications in materials science. Although extensive efforts in the synthesis of Janus particles have been reported, the synthesis of sub‐10 nm Janus nanoparticles is still challenging. Herein, the synthesis of Janus gold nanoparticles (AuNPs) based on interface‐directed self‐assembly is reported. Polystyrene (PS) colloidal particles with AuNPs on the surface were prepared by interface‐directed self‐assembly, and the colloidal particles were used as templates for the synthesis of Janus AuNPs. To prepare colloidal particles, thiol‐terminated polystyrene (PS‐SH) was dissolved in toluene and citrate‐stabilized AuNPs were dispersed in aqueous solution. Upon mixing the two solutions, PS‐SH chains were grafted to the surface of AuNPs and amphiphilic AuNPs were formed at the liquid–liquid interface. PS colloidal particles decorated with AuNPs on the surfaces were prepared by adding the emulsion to excess methanol. On the surface, AuNPs were partially embedded in the colloidal particles. The outer regions of the AuNPs were exposed to the solution and were functionalized through the grafting of atom‐transfer radical polymerization (ATRP) initiator. Poly[2‐(dimethamino)ethyl methacrylate] (PDMAEMA) on AuNPs were prepared by surface‐initiated ATRP. After centrifugation and dissolving the colloidal particles in tetrahydrofuran (THF), Janus AuNPs with PS and PDMAEMA on two hemispheres were obtained. In acidic pH, Janus AuNPs are amphiphilic and are able to emulsify oil droplets in water; in basic pH, the Janus AuNPs are hydrophobic. In mixtures of THF/methanol at a volume ratio of 1:5, the Janus AuNPs self‐assemble into bilayer structures with collapsed PS in the interiors and solvated PDMAEMA at the exteriors of the structures.  相似文献   

17.
Polystyrene (PS) particles were prepared via Pickering emulsion polymerization using graphene oxide (GO) as the stabilizer. The results show that pH is an important factor in the stability of Pickering emulsions. The effects of two different phase initiators, the water phase initiator potassium persulfate and the oil phase initiator azobisisobutyronitrile, on the morphology of PS particles in Pickering emulsion polymerization had been investigated in detail. Wrinkled particles were prepared using the water phase initiator, and spherical particles were prepared using the oil phase initiator. In addition, hexadecane was used as the auxiliary stabilizer in the polymerization, which narrowed the diameter distribution of the PS spheres, and the hollow PS spheres were fabricated. The size of the GO particles also influenced the final morphology of the particles. Nano-sized polymer particles were grafted onto the surface of micro-sized GO. Small GO particles were suitable for Pickering emulsion polymerization to prepare the composite particles. The thermogravimetric analysis of the prepared particles confirmed that they were PS/GO composite particles, which could have a wide range of potential applications, such as in catalysts, sensors, environmental remediation, and energy storage.  相似文献   

18.
Micron-sized monodispersed stimuli-responsive polys’ (PS)/poly(2-dimethylaminoethyl methacrylate-N-isopropyl acrylamide-ethylene glycol dimethacrylate) [P(DM-NIPAM-EGDM)] composite polymer particles were prepared by seeded copolymerisation of DM, NIPAM and EGDM with PS seed particles. Adsorption behaviour of trypsin suggested that composite particles surface has both temperature- and pH-responsive swelling–deswelling characteristics. The performance of composite polymer particles as a carrier for biomolecules in adsorption/release experiments was evaluated by measuring the specific activities of adsorbed trypsin as a function of temperature and pH.  相似文献   

19.
The atom transfer radical polymerization (ATRP) technique using the copper halide/ N,N′,N′,N″,N″‐pentamethyldiethylenetriamine complex was applied to the graft polymerization of methyl methacrylate and methyl acrylate on the uniform polystyrene (PS) seed particles and formed novel core‐shell particles. The core was submicron crosslinked PS particles that were prepared via emulsifier‐free emulsion polymerization. The crosslinked PS particles obtained were transferred into the organic phase (tetrahydrofuran), and surface modification using the chloromethylation method was performed. Then, the modified seed PS particles were used to initiate ATRP to prepare a controlled poly(methyl methacrylate) (PMMA) and poly(methyl acrylate) (PMA) shell. The final core‐shell particles were characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning electron microscopy, thermogravimetric analysis, and elementary analysis. The grafting polymerization was conducted successfully on the surface of modified crosslinked PS particles, and the shell thickness and weight ratio (PMMA and PMA) of the particles were calculated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 892–900, 2002; DOI 10.1002/pola.10160  相似文献   

20.
Submicron‐scaled cagelike polymer microspheres with hollow core/porous shell were synthesized by self‐assembling of sulfonated polystyrene (PS) latex particles at monomer droplets interface. The swelling of the PS latex particles by the oil phase provided a driving force to develop the hollow core. The latex particles also served as porogen that would disengage automatically during polymerization. Influential factors that control the morphology of the microspheres, including the reserving time of emulsions, polymerization rate, and the Hildebrand solubility parameter and polarity of the oil phase, were studied. A variety of monomers were polymerized into microspheres with hollow core/porous shell structure and microspheres with different diameters and pore sizes were obtained. The polymer microspheres were characterized by scanning electron microscopy, transmission electron microscopy, optical microscopy, and Fourier transform infrared spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 933–941, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号