首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The four α,α,α, β,β,β,-hexamethyl α-hydrogen Coα, Coβ-dicyanocobyrinates 2b, d–f , with a free b-, d-, e-, and f-propionic-acid function, respectively, were prepared by partial hydrolysis of heptamethyl Coα, Coβ-dicyanocobyrinate (cobester; 1 ) in aqueous sulfuric acid. The cobester monoacids 2b, d–f were obtained as a ca. 1:1:1:1 mixture which was separated. The monoacids were purified by chromatography and isolated in crystalline form. The position of the free propionic-acid function was determined by an extensive analysis of 2b, d–f using 2D-NMR techniques; an analysis of the C,H-coupling network topology resulted in an alternative assignment strategy for cobyrinic-acid derivatives, based on pattern recognition. Additional information on the structure of the most polar of the four hexamethyl cobyrinates, of the b-isomer 2b , was also obtained in the solid state from a single-crystal X-ray analysis. Earlier structural assignments based on 1D-NMR spectra of the corresponding regioisomeric monoamides 3b, d–f (obtained from crystalline samples of the monoacids 2b, d–f ) were confirmed by the present investigations.  相似文献   

2.
Going through the phases : The title reaction was found to proceed by an initial base‐mediated isomerization to allenyl esters and subsequent phase transfer catalyzed alkylation at the α position of the ester (see scheme).

  相似文献   


3.
As easy as 1, 2, 3 : A palladium‐catalyzed three‐component coupling generates α,β‐unsaturated γ‐amino acids in a single step (see scheme). The reaction is believed to involve migration of a vinyl substituent to a highly electrophilic palladium carbene. Unlike previous synthetic approaches, this synthesis provides access to γ‐amino acids with non‐natural side chains.

  相似文献   


4.
α,α‐Dibromotoluene 1 was found to be polymerized by the reaction with excess Mg to give poly(phenylmethylene)s 2 , whose main chains were partially dehydrogenated to carbon–carbon double bonds (C?C). The C?Cs in 2 can be brominated by treatment with Br2. The polymerization mechanism was presumed to include the formation of Grignard reagents of various species with benzylic C? Br bonds and the nucleophilic attacks of the Grignard reagents to various compounds with benzylic C? Br bonds. Copolymerization of 1 with dichlorodimethylsilane successfully proceeded. Mg/Cu‐mediated copolycondensation of 1 with 1,6‐dibromohexane proceeded to give polymers that have similar compositions to those of random copolymers of ethylene and styrene. © 2006Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5661–5671, 2006  相似文献   

5.
Fully stereodivergent dual‐catalytic α‐allylation of protected α‐amino‐ and α‐hydroxyacetaldehydes is achieved through iridium‐ and amine‐catalyzed substitution of racemic allylic alcohols with chiral enamines generated in situ. The operationally simple method furnishes useful aldehyde building blocks in good yields, more than 99 % ee, and with d.r. values greater than 20:1 in some cases. Additionally, the γ,δ‐unsaturated products can be further functionalized in a stereodivergent fashion with high selectivity and with preservation of stereochemical integrity at the Cα position.  相似文献   

6.
Diazotization of α-amino acids in 48:52 (w/w) hydrogen fluoride/pyridine along with excess of potassium halide results in the corresponding α-halocarboxylic acids in good to excellent yields (Table 1 and 2).  相似文献   

7.
Selective Amide Cleavage in Peptides Containing α,α-Disubstituted α-Amino Acids A new synthesis of dipeptides with terminal α,α-disubstituted α-amino acids, using 2,2-disubtituted 3-amino-2H-azirines 1 as amino-acid equivalents, is demonstrated. The reaction of 1 with N-protected amino acids leads to the corresponding dipeptide amides in excellent yield. It is shown that the previously described selective hydrolysis (HCl, toluene, 80°, or HCl, MeCN/H2O, 80°) of the terminal amide group results in an extensive epimerization of the second last amino acid. An acid-catalyzed enolization in the intermediate oxazole-5(4H)-ones is responsible for this loss of configurational integrity. In the present paper, a selective hydrolysis of the terminal amide group under very mild conditions is described: In 3N HCl (THF/H2O 1:1), the dipeptide N,N-dimethylamides or N-methytlanilides are hydrolized at 25–35° to the optically pure dipeptides in very good yield.  相似文献   

8.
Engineering biomaterials with integrin‐binding activity is a very powerful approach to promote cell adhesion, modulate cell behavior, and induce specific biological responses at the surface level. The aim of this Review is to illustrate the evolution of surface‐coating molecules in this field: from peptides and proteins with relatively low integrin‐binding activity and receptor selectivity to highly active and selective peptidomimetic ligands. In particular, we will bring into focus the difficult challenge of achieving selectivity between the two closely related integrin subtypes αvβ3 and α5β1. The functionalization of surfaces with such peptidomimetics opens the way for a new generation of highly specific cell‐instructive surfaces to dissect the biological role of integrin subtypes and for application in tissue engineering and regenerative medicine.  相似文献   

9.
A novel reaction of α-iodo ketone (α-iodocycloalkanone, α-iodo-β-alkoxy ester, and α-iodoacyclicketone) with irradiation under a high-pressure mercury lamp gave the corresponding α-hydroxyketone in good yields. In the case of α,α′-diiodo ketone, α,α′-dihydroxyketone which little has been reported until now was obtained. This reaction affords a new, clean and convenient synthetic method for α-hydroxy- and α,α′-dihydroxyketone.  相似文献   

10.
The structure determination of the title compound, rotenone α‐oxime [systematic name: 1,2,12,12a‐tetra­hydro‐8,9‐di­meth­oxy‐2‐(1‐methyl­ethenyl)‐[1]­benzo­py­rano­[3,4‐b]­furo­[2,3‐h][1]benzo­pyran‐6(6H)‐one oxime], C23H23NO6, confirms that the mol­ecule has an approximately V‐shaped structure. One of the rings has a typical cyclo­hexene‐like monoplanar conformation and the central ring adopts a 1,2‐diplanar conformation.  相似文献   

11.
The syntheses of a series of l‐methyl‐3‐aryl‐substituted titanocene and zirconocene dichlorides are reported. These complexes are synthesized by the reaction of 2‐ and 3‐methyl‐6, 6‐dimethylfulvenes (1:4) with aryllithium, followed by the reaction with TiCl4·2THF, ZrCl4 and (CpTiCl2)2O respectively, to give complexes 1–5. The complex [η5‐1‐methyl‐3‐(α, α‐dimethylbenzyl) cyclopentadienyl] titanium dichloride has been studied by X‐ray diffraction. The red crystal of this complex is monoclinic, space group P2t/C with unit cell parameters: a =6.973(6) × 10?1 nm, b =36.91(2) × 10?1 nm, c = 10.063(4) × 10?1 nm, α=β= γ = 93.35(5)°, V = 2584(5) × 10?3 nm3 and Z = 4. Refinement for 1004 observed reflections gives the final R of 0.088. There are four independent molecules per unit cell.  相似文献   

12.
A novel reaction of α-halo ketone (α-bromo and α-chloro ketone) with irradiation under microwave gave the corresponding α-hydroxyketone and pyrazine derivative in good yields. In the case of α,α′-dibromo ketone, α-diketone was obtained. This reaction affords a new, clean and convenient synthetic method for α-hydroxyketone, α-diketone, α-chloro ketone and pyrazine derivative.  相似文献   

13.
A designer monomeric protein with a βαβ fold—two parallel β strands connected by an α helix (see structure)—was constructed solely from coded amino acids. The high thermal stability of the structure is due to a large extent to tryptophan–tryptophan interactions between the two β strands.

  相似文献   


14.
The title cyclohexenone 1d undergoes photodimerization selectively at the exocyclic C?C bond to give a 1 : 1 mixture of 1,2‐dialkynyl‐1,2‐dimethylcyclobutanes 6 and 7 . On irradiation in the presence of 2,3‐dimethylbuta‐1,3‐diene, 1d affords bicyclo[8.4.0]tetradeca‐1,2,3,7‐tetraen‐11‐one 9 . This – formal – (6+4)‐cycloadduct undergoes quantitative isomerization to 3‐cycloheptadienyl‐2,5,5‐trimethylcyclohex‐2‐enone 11 on treatment with basic silica gel.  相似文献   

15.
β‐Methyl‐α‐methylene‐γ‐butyrolactone (MMBL) was synthesized and then was polymerized in an N,N‐dimethylformamide (DMF) solution with 2,2‐azobisisobutyronitrile (AIBN) initiation. The homopolymer of MMBL was soluble in DMF and acetonitrile. MMBL was homopolymerized without competing depolymerization from 50 to 70 °C. The rate of polymerization (Rp) for MMBL followed the kinetic expression Rp = [AIBN]0.54[MMBL]1.04. The overall activation energy was calculated to be 86.9 kJ/mol, kp/kt1/2 was equal to 0.050 (where kp is the rate constant for propagation and kt is the rate constant for termination), and the rate of initiation was 2.17 × 10?8 mol L?1 s?1. The free energy of activation, the activation enthalpy, and the activation entropy were 106.0, 84.1, and 0.0658 kJ mol?1, respectively, for homopolymerization. The initiation efficiency was approximately 1. Styrene and MMBL were copolymerized in DMF solutions at 60 °C with AIBN as the initiator. The reactivity ratios (r1 = 0.22 and r2 = 0.73) for this copolymerization were calculated with the Kelen–Tudos method. The general reactivity parameter Q and the polarity parameter e for MMBL were calculated to be 1.54 and 0.55, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1759–1777, 2003  相似文献   

16.
α‐Hydroxy and α,ω‐dihydroxy polymers of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) of various molecular weights were synthesized by group transfer polymerization (GTP) in tetrahydrofuran (THF), using 1‐methoxy‐1‐(trimethylsiloxy)‐2‐methyl propene (MTS) as the initiator and tetrabutylammonium bibenzoate (TBABB) as the catalyst. The hydroxyl groups were introduced by adding one 2‐(trimethylsiloxy) ethyl methacrylate (TMSEMA) unit at one or at both ends of the polymer chain. The ends were converted to 2‐hydroxyethyl methacrylate (HEMA) units after the polymerization by acid‐catalyzed hydrolysis. Gel permeation chromatography (GPC) in THF and proton nuclear magnetic resonance (1H‐NMR) spectroscopy in CDCl3 were used to determine the molecular weight and composition of the polymers. These mono‐ and difunctional methacrylate polymers can be covalently linked at the hydroxy termini to form star polymers and model networks, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1597–1607, 1999  相似文献   

17.
A pathway for the formation of 3‐butadienyl‐1‐tosylpyrroles from 3‐acyl derivatives via secondary and tertiary 3‐hydroxyalkyl‐1‐tosylpyrroles has been developed. The dehydration of the alcohols intermediates is the crucial step: conditions for high chemo‐ and diastereocontrol are described.  相似文献   

18.
A new industrially viable process for the preparation of 1β‐(Ntert‐butyl carbamoyl)‐4‐aza‐5α‐androst‐1‐ene‐3‐one, also known by the generic name finasteride ( 6 ) from the new azaandrostane derivatives such as 1β‐(Ntert‐butyl carbamoyl)‐4‐benzoyl‐4‐aza‐5α‐androstane‐3‐one ( 4 ), 1β‐(Ntert‐butyl carbamoyl)‐4‐benzoyl‐4‐aza‐5α‐androst‐1‐ene‐3‐one ( 5 ) is reported. In this process, benzoyl group is demonstrated as a novel protecting group for lactamic NH group. The structures of newly prepared compounds were established on the basis of spectral data (IR, 1H‐NMR, and MS).  相似文献   

19.
《中国化学》2018,36(5):421-429
Reported herein is an example of highly regio‐, diastereo‐ and enantioselective Cu(I)‐catalyzed intermolecular [3+2] cycloaddition reaction of α‐substituted iminoesters with α‐trifluoromethyl α,β‐unsaturated esters. This novel strategy provided a facile access to pyrrolidines with two skipped (aza)quaternary stereocenters including a CF3 all‐carbon quaternary stereocenter. A broad substrate scope was observed and high yields (up to 94%) with excellent diastereoselectivity (up to >20 : 1 d.r.) and enantioselectivity (up to 98% ee) were obtained.  相似文献   

20.
A scaled version of the AMO method is applied to the 1sσ2pσ 1∑ state of the hydrogen molecule. A method to extend the domain of the mixing parameter λ to the whole complex plane is described and applied in the present calculation. All the parameters introduced have been varied completely. A considerable improvement in the computed energy values is found for large internuclear separations R. The comparison between our potential energy curve and the accurate curve calcualted by Kolos and Wolniewicz is studied and, for example, for R = 12 a.u. the energy difference is only 18% of that for R = 2.43 a.u. The equilibrium separation is found to be 2.140 a.u. in poor agreement with 2.429 a.u. obtained by the previously mentioned authors. In the separated atom limit, the state under consideration does not dissociate into H+ + H?, although the ionic character of the wave function is dominating in the region 3 ≦ R ≦ 8 a.u. The connections with earlier calculations and methods, especially the scaled version of the MO –LCAO approximation, are also pointed out and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号