首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Second-order rate constants have been determined spectrophotometrically for the reactions of 4-nitrophenyl X-substituted 2-methylbenzoates (2a-e) and Y-substituted phenyl 2-methylbenzoates (3a-e) with alicyclic secondary amines in 80 mol % H(2)O/20 mol % DMSO at 25.0 +/- 0.1 degrees C. The o-methyl group in the benzoyl moiety of 2a-e retards the reaction rate but does not influence the reaction mechanism. The Hammett plots for the reactions of 2a-e are nonlinear, while the corresponding Yukawa-Tsuno plots are linear with large r values (1.06-1.70). The linear Yukawa-Tsuno plots suggest that stabilization of the ground-state through resonance interaction between the electron donating substituent X and the carbonyl group is responsible for the nonlinear Hammett plots, while the large r values imply that the ground-state resonance interaction is significant. The reactions of 2a-e resulted in smaller rho(X) values but larger r values than the corresponding reactions of 4-nitrophenyl X-substituted benzoates (1a-e). The small rho(X) value for the reactions of 2a-e (e.g., rho(X) = 0.22) is suggested to be responsible for the large r value (e.g., r = 1.70). The reactions of 3a-e with piperidine are proposed to proceed in a stepwise manner with a change in the rate-determining step on the basis of the curved Br?nsted-type plot obtained. Microscopic rate constants associated with the reactions of 3a-e are also consistent with the proposed mechanism.  相似文献   

2.
The effect of modification of the electrophilic center from C=O to P=O on reactivity and reaction mechanism has been investigated for aminolysis of Y-substituted phenyl diphenylphosphinates (1a-j) and benzoates (2a-i). The phosphinates 1a-j are less reactive than the benzoates 2a-i. The reactions of 2,4-dinitrophenyl diphenylphosphinate (1a) with alicyclic secondary amines resulted in a linear Br?nsted-type plot with a beta(nuc) value of 0.38, while the corresponding reactions of 2,4-dinitrophenyl benzoate (2a) yielded a curved Br?nsted-type plot. Similarly, a linear Br?nsted-type plot with a beta(lg) value of -0.66 was obtained for the reactions of 1a-j with piperidine, while the corresponding reactions of 2a-i gave a curved Br?nsted-type plot. The linear Br?nsted-type plots for the reactions of 1a-j have been taken as evidence for a concerted mechanism, while the curved Br?nsted-type plots for the reactions of 2a-i have been suggested to indicate a change in the rate-determining step of a stepwise mechanism. The Hammett plot for the reactions of 1b-j exhibited a poor correlation with sigma(-) constants (R(2) = 0.962) but slightly better correlation with sigma(o) (R(2) = 0.986). However, the Yukawa-Tsuno plot for the same reactions resulted in an excellent correlation (R(2) = 0.9993) with an r value of 0.30. The aminolysis of 1a-j has been suggested to proceed through a concerted mechanism with an early transition state on the basis of the small beta(nuc) and small r values.  相似文献   

3.
Second-order rate constants have been measured for the reactions of 2,4-dinitrophenyl X-substituted benzoates (1a-f) with a series of primary amines in 80 mol % H(2)O/20 mol % DMSO at 25.0 +/- 0.1 degrees C. The Br?nsted-type plot for the reactions of 1d with primary amines is biphasic with slopes beta(1) = 0.36 at the high pK(a) region and beta(2) = 0.78 at the low pK(a) region and the curvature center at pK(a) degrees = 9.2, indicating that the reaction proceeds through an addition intermediate with a change in the rate-determining step as the basicity of amines increases. The corresponding Br?nsted-type plot for the reactions with secondary amines is also biphasic with beta(1) = 0.34, beta(2) = 0.74, and pK(a) degrees = 9.1, indicating that the effect of amine nature on the reaction mechanism and pK(a) degrees is insignificant. However, primary amines have been found to be less reactive than isobasic secondary amines. The microscopic rate constants associated with the aminolysis have revealed that the smaller k(1) for the reactions with primary amines is fully responsible for their lower reactivity. The electron-donating substituent in the nonleaving group exhibits a negative deviation from the Hammett plots for the reactions of 1a-f with primary and secondary amines, while the corresponding Yukawa-Tsuno plots are linear. The negative deviation has been ascribed to stabilization of the ground state of the substrate through resonance interaction between the electron-donating substituent and the carbonyl functionality.  相似文献   

4.
The reactions of secondary alicyclic amines with 2,4,6-trinitrophenyl methyl carbonate (TNPMC) and 2,4,6-trinitrophenyl acetate (TNPA) are subjected to a kinetic study in aqueous solution, 25.0 degrees C, ionic strength 0.2 (KCl). The reactions are studied by following spectrophotometrically (360 nm) the release of the 2,4,6-trinitrophenoxide anion. Under amine excess, pseudo-first-order rate coefficients (k(obsd)) are found. Plots of k(obsd) vs [amine] are linear, with the slope (kN) independent of pH. The Br?nsted-type plots (log k(N) vs pK(a) of the conjugate acid of the amines) are linear, with slopes beta = 0.41 and beta = 0.36 for the reactions of TNPA and TNPMC, respectively. The predicted breaks of the Br?nsted plots for stepwise mechanisms are pK(a)0 = 6.8 and 7.3, respectively. The lack of Br?nsted breaks for these reactions and the values of the Br?nsted slopes are consistent with concerted mechanisms. By comparison of the reactions under investigation among them and with similar aminolysis and pyridinolysis, the following conclusions can be drawn: (i) Secondary alicyclic amines react with TNPA and TNPMC by concerted mechanisms. (ii) TNPA is more reactive toward these amines than TNPMC due to the greater electron release of MeO from the latter substrate. (iii) The change of 2,4-dinitrophenoxy to 2,4,6-trinitrophenoxy in the zwitterionic tetrahedral intermediate (T+/-) formed in the reactions of the title amines with 2,4-dinitrophenyl acetate greatly destabilizes T+/-. (iv) Secondary alicyclic amines destabilize T+/- relative to pyridines. (v) The intermediate T+/- formed in the reactions of the title amines with S-(2,4,6-trinitrophenyl) acetate is greatly destabilized by substitution of S-(2,4,6-trinitrophenyl) by O-(2,4,6-trinitrophenyl) as the leaving group.  相似文献   

5.
A kinetic study is reported for the reactions of 4-nitrophenyl X-substituted benzoates (1a-1) and Y-substituted phenyl benzoates (2a-1) with two anionic nucleophiles (OH(-) and CN(-)) and three amines (piperidine, hydrazine, and glycylglycine) in 80 mol% H(2)O-20 mol% dimethyl sulfoxide (DMSO) at 25.0 +/- 0.1 degrees C. Each Hammett plot exhibits two intersecting straight lines for the reactions of 1a-1 with the anionic nucleophiles and piperidine, while the Yukawa-Tsuno plots for the same reactions are linear. The Hammett plots for the reactions of 2a-1 with hydrazine and glycylglycine demonstrate much better linear correlations with sigma(-) constants than with sigma degrees or sigma constants, indicating that the leaving group departure occurs at the rate determining step (RDS). On the contrary, sigma(-) constants result in poorer Hammett correlation than sigma degrees constants for the corresponding reactions with OH(-) and CN(-), indicating that the leaving group departure occurs after the RDS for the reactions with the anionic nucleophiles. The large rho(X) value (1.7 +/- 0.1) obtained for the reactions of 1a-1 with the anionic nucleophiles supports the proposal that the reactions proceed through an addition intermediate with its formation being the RDS.  相似文献   

6.
Second-order rate constants have been measured for the reaction of 2,4-dinitrophenyl X-substituted benzenesulfonates with a series of primary amines. The nucleophilic substitution reaction proceeds through competitive S-O and C-O bond fission pathways. The S-O bond fission occurs dominantly for reactions with highly basic amines or with substrates having a strong electron-withdrawing group in the sulfonyl moiety. On the other hand, the C-O bond fission occurs considerably for the reactions with low basic amines or with substrates having a strong electron-donating group in the sulfonyl moiety, emphasizing that the regioselectivity is governed by both the amine basicity and the electronic effect of the sulfonyl substituent X. The apparent second-order rate constants for the S-O bond fission have resulted in a nonlinear Br?nsted-type plot for the reaction of 2,4-dinitrophenyl benzenesulfonate with 10 different primary amines, suggesting that a change in the rate-determining step occurs upon changing the amine basicity. The microscopic rate constants (k(1) and k(2)/k(-)(1) ratio) associated with the S-O bond fission pathway support the proposed mechanism. The second-order rate constants for the S-O bond fission result in good linear Yukawa-Tsuno plots for the aminolyses of 2,4-dinitrophenyl X-substituted benzenesulfonates. However, the second-order rate constants for the C-O bond fission show no correlation with the electronic nature of the sulfonyl substituent X, indicating that the C-O bond fission proceeds through an S(N)Ar mechanism in which the leaving group departure occurs rapidly after the rate-determining step.  相似文献   

7.
The reactions of methyl 4-nitrophenyl carbonate (MNPC) with a series of secondary alicyclic amines (SAA) and quinuclidines (QUIN), methyl 2,4-dinitrophenyl carbonate (MDNPC) with QUIN and 1-(2-hydroxyethyl)piperazinium ion (HPA), and phenyl 2,4-dinitrophenyl carbonate (PDNPC) with SAA are subjected to a kinetic investigation in aqueous solution, at 25.0 degrees C and an ionic strength of 0.2 M. By following spectrophotometrically the nucleofuge release (330-400 nm) under amine excess, pseudo-first-order rate coefficients (k(obsd)) are obtained. Plots of k(obsd) vs [amine] at constant pH are linear, with the slope (k(N)) being pH independent. The Br?nsted-type plot (log k(N) vs amine pK(a)) for the reactions of SAA with MNPC is biphasic with slopes beta(1) = 0.3 (high pK(a) region) and beta(2) = 1.0 (low pK(a) region) and a curvature center at pK(a)(0) = 9.3. This plot is consistent with a stepwise mechanism through a zwitterionic tetrahedral intermediate (T(+/-)) and a change in the rate-determining step with SAA basicity. The Br?nsted plot for the quinuclidinolysis of MNPC is linear with slope beta(N) = 0.86, in line with a stepwise process where breakdown of T(+/-) to products is rate limiting. A previous work on the reactions of SAA with MDNPC was revised by including the reaction of HPA. The Br?nsted plots for the reactions of QUIN and SAA with MDNPC and SAA with PDNPC are linear with slopes beta = 0.51, 0.48, and 0.39, respectively, consistent with concerted mechanisms. Since quinuclidines are better leaving groups from T(+/-) than isobasic SAA, yielding a less stable T(+/-), it seems doubtful that the quinuclidinolysis of PDNPC is stepwise, as reported.  相似文献   

8.
[reaction: see text] The reactions of secondary alicyclic (SA) amines and quinuclidines (QUI) with 4-nitrophenyl and 2,4-dinitrophenyl S-methyl thiocarbonates (1 and 2, respectively) and those of SA amines with 2,3,4,5,6-pentafluorophenyl S-methyl thiocarbonate (3) are subjected to a kinetic study in aqueous solution, at 25.0 degrees C, and an ionic strength of 0.2 M (KCl). The reactions of thiocarbonates 1, 2, and 3 were followed spectrophotometrically at 400, 360, and 220 nm, respectively. Under amine excess, pseudo-first-order rate coefficients (k(obsd)) are found. Plots of k(obsd) vs amine concentration at constant pH are linear, with the slope (kN) independent of pH. The Br?nsted-type plots (log kN vs pKa of aminium ions) are linear for all the reactions, with slopes beta = 0.9 for those of 1 with SA amines and QUI, beta = 0.36 and 0.57 for the reactions of 2 with SA amines and QUI, respectively, and beta = 0.39 for the reactions of SA amines with 3. The magnitude of the slopes indicates that both aminolyses of 1 are governed by stepwise mechanisms, through a zwitterionic tetrahedral intermediate (T+/-), where expulsion of the nucleofuge from T+/- is the rate-determining step. The values of the Br?nsted slopes found for the aminolyses of thiocarbonates 2 and 3 suggest that these reactions are concerted. By comparison of the reactions under investigation between them and with similar aminolyses, the following conclusions arise: (i) Thiocarbonate 2 is more reactive than 1 toward the two amine series. (ii) The change of the nonleaving group from MeO in 4-nitrophenyl methyl carbonate to MeS in thiocarbonate 1 results in lower kN values. (iii) The greater reactivity of this carbonate than thiocarbonate 1 is attributed to steric hindrance of the MeS group, compared to MeO toward amine attack. (iv) The change of a pyridine to an isobasic SA amine or QUI destabilizes the T+/- intermediate formed in the aminolyses of 2. (v) The change of 4-nitrophenoxy to 2,3,4,5,6-pentafluorphenoxy or 2,4-dinitrophenoxy as the leaving group destabilizes the tetrahedral intermediate formed in the reactions with SA amines, changing the mechanism from a stepwise process to a concerted reaction.  相似文献   

9.
The reactions of 2,4-dinitrophenyl and 2,4,6-trinitrophenyl methyl carbonates (DNPC and TNPC, respectively) and S-(2,4-dinitrophenyl) and S-(2,4,6-trinitrophenyl) ethyl thiolcarbonates (DNPTC and TNPTC, respectively) with a series of benzenethiolate anions were subjected to a kinetic investigation in water, at 25.0 degrees C, and an ionic strength of 0.2 M (KCl). These reactions obey pseudo-first-order kinetics, under excess of benzenethiolate, and are first order in the latter reactant. However, comparable reactant concentrations were used in the reactions of 4-nitrobenzenethiolate anion with TNPC and TNPTC, which showed second-order kinetics. The nucleophilic rate constants are pH independent, except those for the reactions of TNPC with 4-methoxy- and pentafluorobenzenethiolates, and TNPTC with benzenethiolate and 4-chloro- and 3-chlorobenzenethiolates, which show acid dependence. The Br?nsted-type plots for the nucleophilic rate constants are linear with slopes beta = 0.9, 1.0, 0.9, and 0.9 for the reactions of DNPC, TNPC, DNPTC, and TNPTC, respectively. No break in the Br?nsted plot was found for the reactions of DNPC and DNPTC at pK(a) ca. 4.1 and 3.4, respectively, consistent with concerted mechanisms. TNPC is more reactive toward benzenethiolate anions than DNPC, and TNPTC more than DNPTC due to the better leaving groups involved. Comparison of the kinetic results obtained in this work with those for the concerted phenolysis of the same substrates shows that benzenethiolate anions are better nucleophiles toward carbonates than isobasic phenoxide anions. This is explained by Pearson's "hard and soft acids and bases" principle.  相似文献   

10.
The reactions 4-methylphenyl 4-nitrophenyl carbonate (MPNPC), 4-chlorophenyl 4-nitrophenyl carbonate (CIPNPC), 4-methylphenyl 2,4-dinitrophenyl carbonate (MPDNPC), and 4-chlorophenyl 2,4-dinitrophenyl carbonate (CIPDNPC) with a homogeneous series of phenoxide anions are subjected to a kinetic investigation in aqueous solution (25.0 degrees C, ionic strength 0.2 M (KCI)). Under an excess of phenoxide with respect to the substrate, all of these reactions obey pseudo-first-order kinetics and are first order in phenoxide. The Br?nsted-type plots for the nucleophilic rate constants (k(N)) are linear, with slopes beta = 0.48 (MPNPC), 0.67 (ClPNPC), 0.41 (MPDNPC), and 0.32 (ClPDNPC). The magnitude of these slopes and the absence of a curvature in the Br?nsted plot at pK(a) = 7.1 for the CIPNPC reactions are consistent with concerted mechanisms (one step). The carbonates MPDNPC and ClPDNPC are more reactive than MPNPC and CIPNPC, respectively, toward phenoxide nucleophiles. This can be explained by the presence of a second nitro group in the nucleofuge of the dinitro derivatives, which (i) leaves their carbonyl carbon more positively charged, making them better electrophiles, and (ii) makes 2,4-dinitrophenoxide a better leaving group than 4-nitrophenoxide. The 4-chloro derivatives are more reactive than the corresponding 4-methyl derivatives. This should be due to the greater electron withdrawal of 4-chloro than 4-methyl, which makes the former carbonyl more electrophilic. Comparison of the concerted phenolysis of MPNPC with the stepwise reactions of secondary alicyclic amines with the same substrate indicates that substitution of a secondary alicyclic amine group in a zwitterionic tetrahedral intermediate by a phenoxy group greatly destabilizes the intermediate. An equation is deduced for log k(N) in terms of the basicity of the nucleophile, the nonleaving moiety, and the leaving group. This equation shows that for these reactions, the sensitivity of log k(N) to the basicity of the nonleaving moiety (beta(nlg) = -0.27) is very similar to that of the nucleofuge (beta(lg) = -0.25).  相似文献   

11.
A kinetic study is reported for reactions of 4-nitrophenyl benzoate (1c) and O-4-nitrophenyl X-substituted thionobenzoates (2a-e) with a series of pyridines in 80 mol % H2O/20 mol % dimethyl sulfoxide (DMSO) at 25.0 +/- 0.1 degrees C. O-4-Nitrophenyl thionobenzoate (2c) is more reactive than its oxygen analogue 1c toward all the pyridines studied. The Br?nsted-type plot is linear with beta(nuc)=1.06 for reactions of 1c but curved for the corresponding reactions of 2c with beta(nu)c decreasing from 1.38 to 0.38 as the pyridine basicity increases, indicating that the reaction mechanism is also influenced on changing the electrophilic center from C=O to C=S. The curvature center of the curved Br?nsted-type plots (defined as pK(a)(o)) occurs at pKa = 9.3 regardless of the electronic nature of the substituent X in the nonleaving group. The Hammett plot for reactions of 2a-e with 4-aminopyridine is nonlinear, i.e., the substrates having an electron-donating substituent exhibit negative deviations from the Hammett plot. However, the Yukawa-Tsuno plot for the same reactions exhibits good linear correlation, indicating that the negative deviations shown by these substrates arise from stabilization of the ground state through resonance interaction between the electron-donating substituent X and the C=S bond.  相似文献   

12.
A kinetic study is reported for nucleophilic substitution reactions of 4-nitrophenyl phenyl carbonate (5) and 4-nitrophenyl phenyl thionocarbonate (6) with a series of primary amines. The thiono compound 6 is less reactive than its oxygen analogue 5 toward strongly basic amines but is more reactive toward weakly basic CF3CH2NH2. The Br?nsted-type plots obtained from the aminolyses of 5 and 6 are curved downwardly. The reactions are proposed to proceed through a stepwise mechanism with a change in the RDS on the basis of the curved Br?nsted-type plots. The microscopic rate constants (k(1) and k(2)/k(-1) ratio) associated with the current aminolyses are consistent with the proposed reaction mechanism. The replacement of the C=O bond in 5 by a polarizable C=S group results in a decrease in the k(1) value but an increase in the k(2)/k(-1) ratio. Besides, such a modification of the electrophilic center causes a decrease in pKa degrees , defined as the pK(a) at the curvature center of curved Br?nsted-type plots, but does not alter the reaction mechanism. The larger k(2)/k(-1) ratio for the reactions of 6 compared to those of 5 is proposed to be responsible for the decreased pK(a) degrees value.  相似文献   

13.
The reactions of 4-nitrophenyl, 2,4-dinitrophenyl, and 2,4,6-trinitrophenyl methyl carbonates (NPC, DNPC, and TNPC, respectively) with substituted phenoxide ions are subjected to a kinetic study in water at 25.0 degrees C, ionic strength 0.2 M (KCl). Production of the leaving groups (the nitro derivatives) is followed spectrophotometrically. Under excess of the phenoxide ions pseudo-first-order rate coefficients (k(obsd)) are found throughout. Plots of k(obsd) vs substituted phenoxide concentration at constant pH are linear, with the slope (k(N)) independent of pH. The Br?nsted-type plots (log k(N) vs pK(a) of the phenols) are linear with slopes beta = 0.67, 0.48, and 0.52 for the phenolysis of NPC, DNPC, and TNPC, respectively. The magnitudes of these Br?nsted slopes are consistent with a concerted mechanism. In the particular case of the phenolysis of NPC the expected hypothetical curvature center of the Br?nsted plot for a stepwise mechanism should be pK(a)(0) = 7.1 (the pK(a) of 4-nitrophenol). This curvature does not appear within the pK(a) range of the substituted phenols studied (5.3--10.3), indicating that these reactions are concerted. The phenolysis of DNPC and TNPC should also be concerted in view of the even more unstable tetrahedral intermediates that would be formed if the reactions were stepwise. The reactions of the same substrates with pyridines are stepwise, which means that substitution of a pyridine moiety in a tetrahedral intermediate by a phenoxy group destabilizes the intermediate perhaps to the point of nonexistence. The k(N) values for the title reactions are larger than those for the concerted phenolysis of the corresponding ethyl S-aryl thiolcarbonates. The k(N) values found in the present reactions are subjected to a dual regression analysis as a function of the pK(a), of both the nucleophile and leaving group, the coefficients being beta(N) = 0.5 and beta(lg) = -0.3, respectively. These coefficients are consistent with a concerted mechanism.  相似文献   

14.
Toward resolving the current controversy regarding the validity of the α-effect, we have examined the reactions of Y-substituted phenyl methanesulfonates 1a-1l with HOO(-), OH(-), and Z-substituted phenoxides in the gas phase versus solution (H(2)O). Criteria examined in this work are the following: (1) Br?nsted-type and Hammett plots for reactions with HOO(-)and OH(-), (2) comparison of β(lg) values reported previously for the reactions of Y-substituted phenyl benzenesulfonates 2a-2k with HOO(-) (β(lg) = -0.73) and OH(-) (β(lg) = -0.55), and for those of 1a-1l with HOO(-) (β(lg) = -0.69) and OH(-) (β(lg) = -1.35), and (3) Br?nsted-type plot showing extreme deviation of OH(-) for reactions of 2,4-dintrophenyl methanesulfonate 1a with aryloxides, HOO(-), and OH(-), signifying extreme solvation vs different mechanisms. The results reveal significant pitfalls in assessing the validity of current interpretations of the α-effect. The extreme negative deviation by OH(-) must be due, in part, to the difference in their reaction mechanisms. Thus, the apparent dependence of the α-effect on leaving-group basicity found in this study has no significant meaning due to the difference in operating mechanisms. The current results argue in favor of a further criterion, i.e., a consistency in mechanism for the α-nucleophiles and normal nucleophiles.  相似文献   

15.
The reactions of a series of phenols with O-methyl O-2,4-dinitrophenyl thiocarbonate (MDNPTOC), O-phenyl O-2,4-dinitrophenyl thiocarbonate (PDNPTOC), and O-ethyl 2,4-dinitrophenyl dithiocarbonate (EDNPDTC) are studied kinetically in water, at 25.0 degrees C and an ionic strength of 0.2 M (KCl). All reactions show pseudo-first-order kinetics under an excess of phenol over the substrate, and are first order in phenoxide anion. The reactions of EDNPDTC show a linear Br?nsted-type plot of slope beta = 0.67, suggesting a concerted mechanism. On the other hand, the phenolyses of MDNPTOC and PDNPTOC exhibit linear Br?nsted-type plots of slopes beta = 0.27 and 0.28, respectively, consistent with stepwise mechanisms where the formation of an anionic tetrahedral intermediate (T(-)) is rate determining. By comparison of the kinetics and mechanisms of the reactions under investigation with similar reactions, the following conclusions arise: (i). Substitution of S(-) by O(-) in the intermediate T(-) destabilizes this species. (ii). The change of DNPO in T(-) to DNPS also destabilizes this intermediate. (iii). Substitution of MeO by PhO as the nonleaving group of the substrate does not affect the kinetics, probably by a compensation of electronic and steric effects. (iv). The change of an amino group in a tetrahedral intermediate to a phenoxy group destabilizes the intermediate.  相似文献   

16.
The title reactions are subjected to a kinetic study in water, at 25.0 degrees C, and an ionic strength of 0.2 M (KCl). By following the reactions spectrophotometrically two consecutive reactions are observed: the first is formation of the corresponding thionocarbamates (1-(aryloxythiocarbonyl)pyridinium cations) and the second is their decomposition to the corresponding phenol and pyridine, and COS. Pseudo-first-order rate coefficients (k(obsd1) and k(obsd2), respectively) are found under excess amine. Plots of k(obsd1) vs free pyridine concentration at constant pH are linear, with the slope (k(N)) independent of pH. The Br?nsted-type plots (log k(N) vs pK(a) of the conjugate acids of the pyridines) are linear with slopes beta = 0.07 and 0.11 for the reactions of phenyl and 4-nitrophenyl chlorothionoformates, respectively. These Br?nsted slopes are in agreement with those found in other stepwise reactions of the same pyridines in water, where the formation of a tetrahedral intermediate is the rate-determining step. In contrast to the stepwise mechanism of the title reactions that for the reactions of the same substrates with phenols is concerted, which means that substitution of a pyridino moiety in a tetrahedral intermediate by a phenoxy group destabilizes the intermediate. The second reaction corresponds to the pyridine-catalyzed hydrolysis of the corresponding 1-(aryloxythiocarbonyl)pyridinium cation. Plots of k(obsd2) vs free pyridine concentration at constant pH are linear, with the slope (k(H)) independent of pH. The Br?nsted plots for k(H) are linear with slopes beta = 0.19 and 0.26 for the reactions of the phenyl and 4-nitrophenyl derivatives, respectively. These low values are explained by the fact that as pK(a) increases the effect of a better pyridine catalyst is compensated by a worse leaving pyridine from the corresponding thionocarbamate  相似文献   

17.
Second-order rate constants have been measured for reactions of Y-substituted phenyl diphenylphosphinates (1a-h) with EtO(-)K(+) in anhydrous ethanol. A linear Br?nsted-type plot is obtained with beta(Lg) = -0.54, a typical beta(Lg) value for reactions which proceed through a concerted mechanism. The Hammett plots correlated with sigma(o) and sigma(-) constants are linear but exhibit many scattered points, while the corresponding Yukawa-Tsuno plot results in excellent linear correlation with r = 0.41. The r value of 0.41 indicates that the leaving group departs at the rate-determining step (RDS) whether the reactions proceed through either a concerted or a stepwise mechanism. However, a stepwise mechanism in which departure of the leaving group occurs at the RDS is excluded since the incoming EtO(-) ion is much more basic and a poorer leaving group than the leaving aryloxide. The DeltaH(++) values determined in the current reactions are strongly dependent on the nature of the substituent Y, while the DeltaS(double dagger) values remain constant on changing the substituent Y in the leaving group, i.e., from Y = H to Y = 4-NO(2) and Y = 3,4-(NO(2))(2). These DeltaH(++) and DeltaS(++) trends also support a concerted mechanism.  相似文献   

18.
[Chemical reaction: See text] The reactions of anilines with 4-nitrophenyl, 4-methylphenyl, and 4-chlorophenyl 4-nitrophenyl carbonates (BNPC, MPNPC and ClPNPC, respectively) are studied kinetically in 44 wt % ethanol-water, at 25.0 degrees C, with an ionic strength of 0.2 M (KCl). Plots of k(obsd) vs [amine] are linear, with the slopes (kN) independent of pH. The Br?nsted-type plots (log k(N) vs pKa of conjugate acids of anilines) are linear, with slopes beta = 0.65, 0.85, and 0.78 for the reactions of anilines with BNPC, MPNPC, and ClPNPC, respectively. The values of the slopes for the two latter reactions are in accordance with those obtained in stepwise mechanism where breakdown to product of a zwitterionic tetrahedral intermediate is the rate-determining step. On the other hand, the beta value for the reactions of BNPC is at the upper limit of those found for concerted mechanisms. The kinetic results for the reactions of anilines with BNPC correlates well with those for the concerted reactions of the same amines with 4-methylphenyl and 4-chlorophenyl 2,4-dinitrophenyl carbonates: A plot of the calculated log k(N) values (through a multiple parametric equation) vs the experimental log k(N) values is linear with unity slope and zero intercept, which confirms the concerted mechanism for the latter three reactions.  相似文献   

19.
[reaction: see text] The title reactions, in 44 wt % ethanol-water at 25.0 degrees C, exhibit slightly curved Br?nsted-type plots (log kN versus pKa of amines) with slopes beta1 = 0.1-0.44 (at high pKa) and beta2 ca. 0.7 (at low pKa). The magnitude of some of these slopes, together with the fact that the curvature center (pKa(0) = 9.5-10.8) does not change with the electronic effects of the benzoyl substituent, suggests that these reactions are not stepwise, but concerted.  相似文献   

20.
Second-order rate constants (k(N)) have been measured spectrophotometrically for the reaction of 4-nitrophenyl X-substituted benzoates with a series of alicyclic secondary amines in H(2)O containing 20 mol % dimethyl sulfoxide at 25.0 degrees C. The magnitude of the k(N) values increases with increasing the basicity of amines and with increasing the electron-withdrawing ability of the acyl substituent X. The Hammett plots obtained are not linear but show a break or curvature as the acyl substituent X becomes electron withdrawing for all the amines studied, while the Bronsted-type plots are linear with large beta(nuc) values for all the substrates investigated. The nonlinear Hammett plots suggest a change in the rate-determining step upon changing the acyl substituent X, whereas the linear Bronsted-type plots indicate that the rate-determining step does not change upon changing amine basicity. The Yukawa-Tsuno plots obtained are also linear with positive rho(X) and large r values, suggesting that the nonlinear Hammett plots are not due to a change in the rate-determining step upon changing the acyl substituent X, but due to resonance demand of the pi-electron donor substituent on the acyl moiety. The magnitude of the rho(X) and beta(nuc) values increases with increasing the basicity of amines and with increasing the electron-withdrawing ability of the acyl substituent X, respectively, while that of the r values decreases with increasing rho(X) values and amine basicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号