首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 In the vicinity of a solution of a nonlinear programming problem at which both strict complementarity and linear independence of the active constraints may fail to hold, we describe a technique for distinguishing weakly active from strongly active constraints. We show that this information can be used to modify the sequential quadratic programming algorithm so that it exhibits superlinear convergence to the solution under assumptions weaker than those made in previous analyses. Received: December 18, 2000 / Accepted: January 14, 2002 Published online: September 27, 2002 RID="★" ID="★" Research supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38. Key words. nonlinear programming problems – degeneracy – active constraint identification – sequential quadratic programming  相似文献   

2.
 There recently has been much interest in non-interior continuation/smoothing methods for solving linear/nonlinear complementarity problems. We describe extensions of such methods to complementarity problems defined over the cone of block-diagonal symmetric positive semidefinite real matrices. These extensions involve the Chen-Mangasarian class of smoothing functions and the smoothed Fischer-Burmeister function. Issues such as existence of Newton directions, boundedness of iterates, global convergence, and local superlinear convergence will be studied. Preliminary numerical experience on semidefinite linear programs is also reported. Received: October 1999 / Accepted: April 2002 Published online: December 19, 2002 RID="⋆" ID="⋆" This research is supported by National Science Foundation Grant CCR-9731273. Key words. semidefinite complementarity problem – smoothing function – non-interior continuation – global convergence – local superlinear convergence  相似文献   

3.
 We consider optimality systems of Karush-Kuhn-Tucker (KKT) type, which arise, for example, as primal-dual conditions characterizing solutions of optimization problems or variational inequalities. In particular, we discuss error bounds and Newton-type methods for such systems. An exhaustive comparison of various regularity conditions which arise in this context is given. We obtain a new error bound under an assumption which we show to be strictly weaker than assumptions previously used for KKT systems, such as quasi-regularity or semistability (equivalently, the R 0-property). Error bounds are useful, among other things, for identifying active constraints and developing efficient local algorithms. We propose a family of local Newton-type algorithms. This family contains some known active-set Newton methods, as well as some new methods. Regularity conditions required for local superlinear convergence compare favorably with convergence conditions of nonsmooth Newton methods and sequential quadratic programming methods. Received: December 10, 2001 / Accepted: July 28, 2002 Published online: February 14, 2003 Key words. KKT system – regularity – error bound – active constraints – Newton method Mathematics Subject Classification (1991): 90C30, 65K05  相似文献   

4.
 We consider a quadratic cut method based on analytic centers for two cases of convex quadratic feasibility problems. In the first case, the convex set is defined by a finite yet large number, N, of convex quadratic inequalities. We extend quadratic cut algorithm of Luo and Sun [3] for solving such problems by placing or translating the quadratic cuts directly through the current approximate center. We show that, in terms of total number of addition and translation of cuts, our algorithm has the same polynomial worst case complexity as theirs [3]. However, the total number of steps, where steps consist of (damped) Newton steps, function evaluations and arithmetic operations, required to update from one approximate center to another is , where ε is the radius of the largest ball contained in the feasible set. In the second case, the convex set is defined by an infinite number of certain strongly convex quadratic inequalities. We adapt the same quadratic cut method for the first case to the second one. We show that in this case the quadratic cut algorithm is a fully polynomial approximation scheme. Furthermore, we show that, at each iteration, k, the total number steps (as described above) required to update from one approximate center to another is at most , with ε as defined above. Received: April 2000 / Accepted: June 2002 Published online: September 5, 2002 Key words. convex quadratic feasibility problem – interior-point methods – analytic center – quadratic cuts – potential function  相似文献   

5.
 We propose and analyze a class of penalty-function-free nonmonotone trust-region methods for nonlinear equality constrained optimization problems. The algorithmic framework yields global convergence without using a merit function and allows nonmonotonicity independently for both, the constraint violation and the value of the Lagrangian function. Similar to the Byrd–Omojokun class of algorithms, each step is composed of a quasi-normal and a tangential step. Both steps are required to satisfy a decrease condition for their respective trust-region subproblems. The proposed mechanism for accepting steps combines nonmonotone decrease conditions on the constraint violation and/or the Lagrangian function, which leads to a flexibility and acceptance behavior comparable to filter-based methods. We establish the global convergence of the method. Furthermore, transition to quadratic local convergence is proved. Numerical tests are presented that confirm the robustness and efficiency of the approach. Received: December 14, 2000 / Accepted: August 30, 2001 Published online: September 27, 2002 Key words. nonmonotone trust-region methods – sequential quadratic programming – penalty function – global convergence – equality constraints – local convergence – large-scale optimization Mathematics Subject Classification (2000): 65K05, 90C30  相似文献   

6.
Combining search directions using gradient flows   总被引:2,自引:0,他引:2  
 The efficient combination of directions is a significant problem in line search methods that either use negative curvature, or wish to include additional information such as the gradient or different approximations to the Newton direction. In this paper we describe a new procedure to combine several of these directions within an interior-point primal-dual algorithm. Basically, we combine in an efficient manner a modified Newton direction with the gradient of a merit function and a direction of negative curvature, if it exists. We also show that the procedure is well-defined, and it has reasonable theoretical properties regarding the rate of convergence of the method. We also present numerical results from an implementation of the proposed algorithm on a set of small test problems from the CUTE collection. Received: November 2000 / Accepted: October 2002 Published online: February 14, 2003 Key Words. negative curvature – primal-dual methods – interior-point methods – nonconvex optimization – line searches Mathematics Subject Classification (1991): 49M37, 65K05, 90C30  相似文献   

7.
 An iterative framework for solving generalized equations with nonisolated solutions is presented. For generalized equations with the structure , where is a multifunction and F is single-valued, the framework covers methods that, at each step, solve subproblems of the type . The multifunction approximates F around s. Besides a condition on the quality of this approximation, two other basic assumptions are employed to show Q-superlinear or Q-quadratic convergence of the iterates to a solution. A key assumption is the upper Lipschitz-continuity of the solution set map of the perturbed generalized equation . Moreover, the solvability of the subproblems is required. Conditions that ensure these assumptions are discussed in general and by means of several applications. They include monotone mixed complementarity problems, Karush-Kuhn-Tucker systems arising from nonlinear programs, and nonlinear equations. Particular results deal with error bounds and upper Lipschitz-continuity properties for these problems. Received: November 2001 / Accepted: November 2002 Published online: December 9, 2002 Key Words. generalized equation – nonisolated solutions – Newton's method – superlinear convergence – upper Lipschitz-continuity – mixed complementarity problem – error bounds Mathematics Subject Classification (1991): 90C30, 65K05, 90C31, 90C33  相似文献   

8.
 Graph partition is used in the telecommunication industry to subdivide a transmission network into small clusters. We consider both linear and semidefinite relaxations for the equipartition problem and present numerical results on real data from France Telecom networks with up 900 nodes, and also on randomly generated problems. Received: August 8, 2001 / Accepted: November 9, 2001 Published online: December 9, 2002 RID="★★" ID="★★" This research was carried out while this author was working at France Telecom R & D, 38–40 rue du Général Leclerc, F-92794 Issy-Les-Moulineaux Cedex 9, France. RID="★" ID="★" This author greatfully acknowledges financial support from the Austrian Science Foundation FWF Project P12660-MAT. Key words. graph partitioning – semidefinite programming  相似文献   

9.
10.
 In this paper we consider stochastic programming problems where the objective function is given as an expected value of a convex piecewise linear random function. With an optimal solution of such a problem we associate a condition number which characterizes well or ill conditioning of the problem. Using theory of Large Deviations we show that the sample size needed to calculate the optimal solution of such problem with a given probability is approximately proportional to the condition number. Received: May 2000 / Accepted: May 2002-07-16 Published online: September 5, 2002 RID="★" The research of this author was supported, in part, by grant DMS-0073770 from the National Science Foundation Key Words. stochastic programming – Monte Carlo simulation – large deviations theory – ill-conditioned problems  相似文献   

11.
In this paper we present some non-interior path-following methods for linear complementarity problems. Instead of using the standard central path we use a scaled central path. Based on this new central path, we first give a feasible non-interior path-following method for linear complementarity problems. And then we extend it to an infeasible method. After proving the boundedness of the neighborhood, we prove the convergence of our method. Another point we should present is that we prove the local quadratic convergence of feasible method without the assumption of strict complementarity at the solution.  相似文献   

12.
 We present a unified convergence rate analysis of iterative methods for solving the variational inequality problem. Our results are based on certain error bounds; they subsume and extend the linear and sublinear rates of convergence established in several previous studies. We also derive a new error bound for $\gamma$-strictly monotone variational inequalities. The class of algorithms covered by our analysis in fairly broad. It includes some classical methods for variational inequalities, e.g., the extragradient, matrix splitting, and proximal point methods. For these methods, our analysis gives estimates not only for linear convergence (which had been studied extensively), but also sublinear, depending on the properties of the solution. In addition, our framework includes a number of algorithms to which previous studies are not applicable, such as the infeasible projection methods, a separation-projection method, (inexact) hybrid proximal point methods, and some splitting techniques. Finally, our analysis covers certain feasible descent methods of optimization, for which similar convergence rate estimates have been recently obtained by Luo [14]. Received: April 17, 2001 / Accepted: December 10, 2002 Published online: April 10, 2003 RID="⋆" ID="⋆" Research of the author is partially supported by CNPq Grant 200734/95–6, by PRONEX-Optimization, and by FAPERJ. Key Words. Variational inequality – error bound – rate of convergence Mathematics Subject Classification (2000): 90C30, 90C33, 65K05  相似文献   

13.
 Based on the work of the Nesterov and Todd on self-scaled cones an implementation of a primal-dual interior-point method for solving large-scale sparse conic quadratic optimization problems is presented. The main features of the implementation are it is based on a homogeneous and self-dual model, it handles rotated quadratic cones directly, it employs a Mehrotra type predictor-corrector extension and sparse linear algebra to improve the computational efficiency. Finally, the implementation exploits fixed variables which naturally occurs in many conic quadratic optimization problems. This is a novel feature for our implementation. Computational results are also presented to document that the implementation can solve very large problems robustly and efficiently. Received: November 18, 2000 / Accepted: January 18, 2001 Published online: September 27, 2002 Key Words. conic optimization – interior-point methods – large-scale implementation  相似文献   

14.
In this paper, we propose a modified semismooth Newton method for a class of complementarity problems arising from the discretization of free boundary problems and establish its monotone convergence. We show that under appropriate conditions, the method reduces to semismooth Newton method. We also do some preliminary numerical experiments to show the efficiency of the proposed method.  相似文献   

15.
 In this paper, we survey the most recent methods that have been developed for the solution of semidefinite programs. We first concentrate on the methods that have been primarily motivated by the interior point (IP) algorithms for linear programming, putting special emphasis in the class of primal-dual path-following algorithms. We also survey methods that have been developed for solving large-scale SDP problems. These include first-order nonlinear programming (NLP) methods and more specialized path-following IP methods which use the (preconditioned) conjugate gradient or residual scheme to compute the Newton direction and the notion of matrix completion to exploit data sparsity. Received: December 16, 2002 / Accepted: May 5, 2003 Published online: May 28, 2003 Key words. semidefinite programming – interior-point methods – polynomial complexity – path-following methods – primal-dual methods – nonlinear programming – Newton method – first-order methods – bundle method – matrix completion The author's research presented in this survey article has been supported in part by NSF through grants INT-9600343, INT-9910084, CCR-9700448, CCR-9902010, CCR-0203113 and ONR through grants N00014-93-1-0234, N00014-94-1-0340 and N00014-03-1-0401. Mathematics Subject Classification (2000): 65K05, 90C06, 90C22, 90C25, 90C30, 90C51  相似文献   

16.
The semismooth Newton method was introduced in a paper by Qi and Sun (Math. Program. 58:353–367, 1993) and the subsequent work by Qi (Math. Oper. Res. 18:227–244, 1993). This method became the basis of many solvers for certain classes of nonlinear systems of equations defined by a nonsmooth mapping. Here we consider a particular system of equations that arises from the discretization of a reactive transport model in the subsurface including mineral precipitation-dissolution reactions. The model is highly complicated and uses a coupling of PDEs, ODEs, and algebraic equations, together with some complementarity conditions arising from the equilibrium conditions of the minerals. The aim is to show that this system, though quite complicated, usually satisfies the convergence criteria for the semismooth Newton method, and can therefore be solved by a locally quadratically convergent method. This gives a theoretical sound approach for the solution of this kind of applications, whereas the geoscientist’s community most frequently applies algorithms involving some kind of trial-and-error strategies.  相似文献   

17.
In this paper, we study the properties of the penalized Fischer-Burmeister (FB) second-order cone (SOC) complementarity function. We show that the function possesses similar desirable properties of the FB SOC complementarity function for local convergence; for example, with the function the second-order cone complementarity problem (SOCCP) can be reformulated as a (strongly) semismooth system of equations, and the corresponding nonsmooth Newton method has local quadratic convergence without strict complementarity of solutions. In addition, the penalized FB merit function has bounded level sets under a rather weak condition which can be satisfied by strictly feasible monotone SOCCPs or SOCCPs with the Cartesian R 01-property, although it is not continuously differentiable. Numerical results are included to illustrate the theoretical considerations.  相似文献   

18.
 We revise the Volume Algorithm (VA) for linear programming and relate it to bundle methods. When first introduced, VA was presented as a subgradient-like method for solving the original problem in its dual form. In a way similar to the serious/null steps philosophy of bundle methods, VA produces green, yellow or red steps. In order to give convergence results, we introduce in VA a precise measure for the improvement needed to declare a green or serious step. This addition yields a revised formulation (RVA) that is halfway between VA and a specific bundle method, that we call BVA. We analyze the convergence properties of both RVA and BVA. Finally, we compare the performance of the modified algorithms versus VA on a set of Rectilinear Steiner problems of various sizes and increasing complexity, derived from real world VLSI design instances. Received: December 1999 / Accepted: September 2002 Published online: December 19, 2002 Key Words. volume algorithm – bundle methods – Steiner problems Correspondence to: Claudia A. Sagastizábal, e-mail: sagastiz@impa.br  相似文献   

19.
In this paper, we present a hybrid method for the solution of a class of composite semismooth equations encountered frequently in applications. The method is obtained by combining a generalized finite-difference Newton method to an inexpensive direct search method. We prove that, under standard assumptions, the method is globally convergent with a local rate of convergence which is superlinear or quadratic. We report also several numerical results obtained applying the method to suitable reformulations of well-known nonlinear complementarity problems.  相似文献   

20.
 The stability number α(G) for a given graph G is the size of a maximum stable set in G. The Lovász theta number provides an upper bound on α(G) and can be computed in polynomial time as the optimal value of the Lovász semidefinite program. In this paper, we show that restricting the matrix variable in the Lovász semidefinite program to be rank-one and rank-two, respectively, yields a pair of continuous, nonlinear optimization problems each having the global optimal value α(G). We propose heuristics for obtaining large stable sets in G based on these new formulations and present computational results indicating the effectiveness of the heuristics. Received: December 13, 2000 / Accepted: September 3, 2002 Published online: December 19, 2002 RID="★" ID="★" Computational results reported in this paper were obtained on an SGI Origin2000 computer at Rice University acquired in part with support from NSF Grant DMS-9872009. Key Words. maximum stable set – maximum clique – minimum vertex cover – semidefinite program – semidefinite relaxation – continuous optimization heuristics – nonlinear programming Mathematics Subject Classification (2000): 90C06, 90C27, 90C30  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号