首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Dimethylammonium trifluoromethanesulfonate 1 was synthesized by reaction of trifluoromethanesulfonic acid with an excess of dimethylamine. A temperature variable synchrotron measurement on the polycrystalline substance reveals that 1 passes through a phase transition below room temperature. The transition occurs in the temperature range of 282–285 K on heating and 272–280 K on cooling as determined by DSC. The room temperature phase crystallizes in space group Cmca (a = 11.031(6) Å, b = 18.466(14) Å, c = 8.173(9) Å, V = 1665(2) Å3, Z = 8) and the low temperature phase in space group P 21/c (a = 8.8717(18) Å, b = 8.0838(16) Å, c = 10.968(2) Å, β = 92.128(4)°, V = 786.0(3) Å3, Z = 4). The structures of both phases were determined by single crystal X‐ray diffraction, but refinement did not yield satisfactory residuals for the low temperature phase because of twinning of the crystal. It was, therefore, independently solved from the synchrotron powder diffraction data using rigid body models of the constituent ions and ab‐initio direct space methods. Both, the CF3 group and the SO3 group of the triflate ion, are rotationally disordered around the S–C bond, in the room temperature phase. In the low temperature phase, the triflate ion is well localized. Like in the alkali metal triflates, the triflate ions are arranged in double layers with the hydrophobic trifluoromethyl groups and the sulfonate groups, respectively, pointing towards each other. The dimethylammonium ion is located closer to the sulfonate group with contacts indicating hydrogen bonding. The packing in both phases is of the topological CsCl structure type.  相似文献   

2.
The crystal structures of the room and the high temperature modifications of cesium trifluoromethyl sulfonate were solved from high resolution X‐ray powder diffraction data. At room temperature, α‐CsSO3CF3 crystallizes in the monoclinic space group P21 with lattice parameters a = 9.7406(2) Å, b = 6.1640(1) Å, c = 5.4798(1) Å, and β = 104.998(1)°; Z = 2. At temperatures above T = 380 K, a second order phase transformation towards a disordered C‐centered orthorhombic phase in space group Cmcm occurs with lattice parameters at T = 492 K of a = 5.5074(3) Å, b = 19.4346(14) Å, and c = 6.2978(4) Å; Z = 4. Within the crystal structures, the triflate anions are arranged in double layers with the apolar CF3‐groups pointing towards each other. The cesium ions are located between the SO3‐groups. CsSO3CF3 shows a specific ion conductivity ranging from σ = 1.06·10?8 Scm?1 at T = 393 K to σ = 5.18·10?4 Scm?1 at T = 519 K.  相似文献   

3.
设计制备了两个新的配合物[Fe(dpq)(Mepy)2(NCS)2](1)和[Fe(Medpq)(Mepy)2 (NCS)2](2)。室温下X衍射结果表明配合物(2)为正交晶系,晶胞参数为a = 15.057(3) Å, b = 14.569(3) Å, c = 13.180(3) Å, a = 90.00°, b=90.00°, g = 90.00°。[FeN6] 变型八面体构型中,两个NCS-与其顺式配位,其余四个氮分别来自Medpq和两个Mepy。变温磁化率和穆斯堡尔谱学的研究表明配合物(1)(2)存在自旋交叉,配合物(1)的自旋转换温度为 T1/2 =340K,而配合物(2)在低温条件下的转换是不完全的。  相似文献   

4.
An organic–inorganic hybrid compound [(CH3)2NH2]2ZnBr4 has been prepared at room temperature under the slow evaporation method. Its structure was solved at 150 K using the single-crystal X-ray diffraction method. [(CH3)2NH2]2ZnBr4 crystallizes in the monoclinic system – a = 8.5512 (12) Å, b = 11.825 (2) Å, c = 13.499 (2) Å, β = 90.358 (6)°, V = 1365 (4) Å3, and Z = 4, space group P21/n. In the structure of [(CH3)2NH2]2ZnBr4, tetrabromozincate anions are connected to organic cations through N–H⋯ Br hydrogen bonds. Differential scanning calorimetry (DSC) measurements indicate that [(CH3)2NH2]2ZnBr4 undergoes four phase transitions at T1 = 281 K, T2 = 340 K, T3 = 377 K, and T4 = 408 K. Meanwhile, several studies including DSC measurements and variable-temperature structural analyses were performed to reveal the structural phase transition at T = 281 K in [(CH3)2NH2]2ZnBr4. Conductivity and dielectric study as a function of temperature (378 < T [K] < 423) and frequency (10−1 < f [Hz] < 106) were investigated. Analysis of equivalent circuit, alternating current conductivity, and dielectric studies confirmed the phase transition at T4. Conduction takes place by correlated barrier hopping in each phase.  相似文献   

5.
The crystal structures of the alkali double salts [Mg(H2O)6]XBr3 (X = Rb+, Cs+) were analyzed in dependence on temperature from laboratory and synchrotron X‐ray powder diffraction data. At room temperature, both compounds are isostructural to [Mg(H2O)6](NH4)Br3 (C2/c; Z = 4; a = 9.64128(6) Å, b = 9.86531(5) Å, c = 13.78613(9) Å, β = 90.0875(5)° for [Mg(H2O)6]RbBr3; a = 9.82304(7) Å, b = 9.98043(6) Å, c = 14.0100(1) Å, β = 90.1430(4)° for [Mg(H2O)6]CsBr3). At a temperature of T = 358 K, [Mg(H2O)6]RbBr3 undergoes a reversible phase transition towards a cubic perovskite type of structure with the [Mg(H2O)6]2+ octahedron in the cuboctahedral cavity exhibiting 4‐fold disorder ( ; a = 6.94198(1) Å at T = 458 K). In case of [Mg(H2O)6]CsBr3 the lattice parameters in dependence on temperature show a distinct kink at T = 340 K, but no symmetry breaking phase transition occurs before decomposition starts. The dominant role of hydrogen bonding with respect to the stability of the crystal structures is discussed.  相似文献   

6.
7.
Oxidation of Co(thd)2 dissolved in different solvents has been investigated in air and oxygen atmosphere. In oxygen atmosphere and at the boiling point of the solvents this treatment leads to oxidation of CoII to CoIII, but also to degradation of some of the thd ligands and formation of a new mixed‐ligand complex. Three pure‐cultivated crystalline Co(thd)3 phases are reported: 1 (room‐temperature phase), 2 (low‐temperature phase), and 3 (metastable phase) and in addition there exists an amorphous Co(thd)3 phase ( 4 ) with approximate composition Co(thd)3·xH(thd); x = 0.06. Reaction of metal(II) oxides (MO, M = Mn, Fe, and Co) with H(thd) under air or O2 atmosphere is an easy direct route to M(thd)3 complexes. Structure determinations are reported for Co(thd)3 ( 1 – 3 ) based on single‐crystal X‐ray diffraction data. Modification 1 crystallizes in space group with a = b = 18.8100(10), c = 18.815(2) Å at 295 K; R(wR2) = 0.180, modification 2 in space group C2/c with a = 28.007(12), b = 18.482(8), c = 21.356(9) Å, β = 97.999(5)° at 100 K; R(wR2) =0.211, and modification 3 in space group Pnma with a = 19.2394(15), b = 18.8795(15), c = 10.7808(8) Å at 100 K; R(wR2) = 0.193. The molecular structures of 1 – 3 all comprise a central Co atom octahedrally co‐ordinated by the ketonato O atoms of three thd ligands. The transformation between modifications 1 and 2 is of a fully reversible second‐order character. Modifications 1 and 3 are, on the other hand, related by a quasi‐reversible cycle. Heat treatment (specifically sublimation) of 1 leads to 3 whereas re‐crystallization or prolonged storage at room temperature is required to regenerate 1 . Co(thd)3 has sufficient thermal stability to permit sublimation without degradation. The various forms of Co(thd)3 are all diamagnetic, viz. a confirmation of the CoIII valence state.  相似文献   

8.
Crystal Structure, Phase Transition, and Potassium Ion Conductivity of Potassium Trifluoromethanesulfonate According to the results of temperature dependent powder diffractometry (Guinier‐Simon‐technique) potassium trifluoromethanesulfonate is dimorphic. The phase transition occurs between –63 °C and –45 °C. The low‐temperature modification crystallizes monoclinic with a = 10.300(3) Å, b = 6.052(1) Å, c = 14.710(4) Å, β = 111.83(2)° (–120 °C) and the room‐temperature modification with a = 10.679(5) Å, b = 5.963(2) Å, c = 14.624(5) Å, β = 111.57(3)°, Z = 6, P21. According to single crystal structure determination, potassium trifluoromethanesulfonate consists of three different potassium‐oxygen‐coordination polyhedra, linked by sulfur atoms of the trifluoromethanesulfonate groups. This results in a channel structure with all lipophilic trifluoromethane groups pointing into these channels. By means of DSC, the transition temperature and enthalpy have been determined to be –33 °C and 0.93 ± 0.03 kJ/mol, respectively. The enthalpy of melting (237 °C) for potassium trifluoromethanesulfonate is 13.59 kJ/mol, the potassium ionic conductivity is 3.68 · 10–6 Scm–1 at 205 °C.  相似文献   

9.
Metallographical and differential thermoanalytical (DTA) investigatitons indicate that the well known phosphide Co2P (Pearson code oP12, space group Pnma, Co2Si type) is not stable up to the melting point, T = 1659 K; it is therefore designated as the low‐temperature phase α‐Co2P. In the temperature range from 1428 to 1659 K, another, high‐temperature phase, designated as β‐Co2P, exists. X‐ray powder diffraction investigation of liquid quenched alloys in the composition range xP = 0.25 to 0.335, with xP as the mole fraction, show that the high‐temperature phase β‐Co2P is isotypic with Fe2P (hP9, P 6 2m). For the ideal composition Co2P, the unit cell parameters are: a = 5.742(2) Å, c = 3.457(5) Å, c/a = 0.621. Among the binary transition metal‐containing phosphides and arsenides isotypic with Fe2P, β‐Co2P is the only known high‐temperature phase and it shows (i) the highest axial ratio c/a and (ii) the “smallest” distortion of the hcp substructure formed by the transition metals atoms in the Fe2P structure type.  相似文献   

10.
Tris[3, 5-bis(trifluoromethyl)phenyl]arsine oxide ( 1 ) was synthesised by oxidation of tris[3, 5-bis(trifluoromethyl)phenyl]arsine with hydrogen peroxide in acetone. At 293 K, it crystallizes in the trigonal space group R3c (a = 20.2947(12) Å, c = 11.2484(13) Å, Z = 6, R1 = 0.0254). The compound undergoes a phase transition upon cooling, and it crystallizes in the monoclinic space group Cc at 100 K (a = 13.8621(13) Å, b = 18.6537(17) Å, c = 11.2874(10) Å, Z = 4, R1 = 0.0444). The crystal structures of both phases were determined. The fluorine atoms of the trifluoromethyl groups are strongly disordered at room temperature, which probably indicates a rotational motion in the plane of the fluorine atoms. This motion slows down while lowering the temperature, and the fluorine atoms are localized at 100 K. This point is illustrated by comparison of the experimental electron densities at the CF3 groups. The packing pattern in both structures consists of parallel columns of ecliptically stacked molecules. The columns are hexagonally arranged.  相似文献   

11.
Li7MO6 (M = Bi, Ru, Os) have been synthesized by solid state reaction of Li2O with Bi2O3, or MO2 (M = Ru, Os) and characterized using powder X‐ray diffraction, differential scanning calorimetry, magnetic susceptibility (for M = Ru, Os), ionic conductivity and 6Li solid state NMR (for M = Bi) measurements. All three compounds exhibit a temperature induced triclinic – rhombohedral phase transition. Structures of the new low temperature triclinic phases have been refined by the Rietveld method from powder X‐ray data using atomic parameters of Li7TaO6 as a starting model ( Li7BiO6 : triclinic, , a = 5.5071(1), b = 6.0425(1), c = 5.5231(1) Å, α = 116.912(1), β = 120.867(1), γ = 62.234(1)°, V = 133.96(1) Å3, Z = 1, T = 230 K; Li7RuO6 : triclinic, , a = 5.3654(1), b = 5.8584(1), c = 5.3496(1) Å, α = 117.182(1), β = 119.117(1), γ = 62.632(1)°, V = 124.43(1) Å3, Z = 1, T = 295 K; Li7OsO6 : triclinic, , a = 5.3786(1), b = 5.8725(1), c = 5.3591(1) Å, α = 117.193(1), β = 119.277(1), γ = 62.700(1)°, V = 125.15(1) Å3, Z = 1, T = 295 K). Upon cooling, Li7RuO6 and Li7OsO6 undergo a magnetic transition at 12 and 13 K, respectively, from the paramagnetic to the antiferromagnetic state. The higher ionic conductivity of Li7BiO6 at T < 300 °C, as compared to Li7RuO6 and Li7OsO6, can be ascribed to the undergoing of the triclinic – rhombohedral transition at a much lower temperature. At T > 300 °C, the ionic conductivity of all three compounds increases sharply due to the melting of the lithium sublattice; for Li7RuO6 and Li7OsO6 the latter effect is superimposed by the phase transitions to the rhombohedral modifications.  相似文献   

12.
Cu3SbS3: Crystal Structure and Polymorphism The hitherto unknown crystal structure of β-Cu3SbS3 at room temperature could be determined from a twinned crystal. The compound crystallizes in the monoclinic system, space group P21/c (No. 14), with a = 7.808(1), b = 10.233(2) and c = 13.268(2) Å, β = 90.31(1)°, V = 1 060.1(2) Å3, Z = 8. An Extended-Hückel-Calculation shows weak bonding interactions between copper atoms which are coordinated trigonal planar. At ?9°C a first order phase transition occurs and the crystals disintegrate. The low-temperature modification (γ) crystallizes in the orthorhombic system with a = 7.884(2), b = 10.219(2) and c = 6.623(2) Å, V = 533.6(2) Å3 (?100°C). At 121°C a phase transition of higher order is observed. The high-temperature polymorph (α) of Cu3SbS3 is orthorhombic again. From high-temperature precession photographs the space groups Pnma (No. 62) or Pna21 (No. 33) can be derived. The lattice constants at 200°C are a = 7.828(3), b = 10.276(4) and c = 6.604(3) Å, V = 531.2(2) Å3.  相似文献   

13.
Phase pure, coarse crystalline Bi2NaRuO6 was synthesized in a hydrothermal approach. It displays a new crystal structure (Pnma (62), a = 12.1408(1) Å, b = 7.49282(6) Å, c = 12.1163(1) Å, Z = 8), which is characterized by a quasi-1D poly-oxoanion composed of (RuO6) octahedra sharing oxygen atoms in trans position. The magnetic response at high temperatures is described by a Curie-Weiss law reflecting strong antiferromagnetic interactions. The obtained effective magnetic moment complies with the d3 configuration for Ru5+. Below 208 K a weakly ferromagnetic state evolves while no phase transition could be observed in a heat capacity measurement. The compound displays activated electrical conduction. The overall composition and the ionic radii ratios of the constituents encourage to apply elevated hydrostatic pressure in order to realize the title compound in a double perovskite type arrangement, instead of the chain-like structure encountered at ambient conditions.  相似文献   

14.
Abstract

The temperature dependence of the CH3… π hostguest interaction in the p‐tertbutylcalix[4]arene 1:1 toluene complex has been investigated by comparison of its known molecular structure at room temperature (RT) with that at 220 K determined by single crystal X-ray diffraction. The diffraction pattern showed a phase transition when the temperature was decreased from 298 to 220 K.

The structure at 220 K could be solved assuming a twin by pseudo-merohedry with a fourfold twin axis [001] relating two monoclinic components with equal volumes of space group P 112/a a = b = 17.899(2), c = 13.827(1) Å, V = 4429.8(8) Å3, Z = 2, mol. weight 741.06 a.m.u., D calc = 1.111 g·cm?3.

The structure refinement converged to R1 = 0.103 and wR2 = 0.256 for 1655 unique observed data.

The complex exists in two different conformations of the hosts which exhibit two different host-guest structural relationships both indicating that the most relevant differences induced by the low temperature are concerning the host-guest interaction mode.

Particularly unexpected is the different temperature dependence of the CH3…π interactions between the tert-butyl of the host and the aromatic moiety of the guest with respect to that of the van der Waals interactions. The CH3…π interactions, which stabilizes the complex at RT, strongly decrease as the temperature decreases.  相似文献   

15.
Jahn‐Teller Ordering in Manganese(III) Fluoride Sulfates. II. Phase Transition and Twinning of K2[MnF3(SO4)] and 1D Magnetism in Compounds A2[MnF3(SO4)] (A = K, NH4, Rb, Cs) According to single‐crystal X‐ray investigations, K2[MnF3(SO4)] crystallizes at low temperature, like the isostructural Rb, NH4, and Cs analogues in space group P21/c, Z = 4, e.g. at 100 K with a = 7.197, b = 10.704, c = 8.427Å, β = 91.84°. Below about 300 K, the crystals are found to be [001] axis twins. Using a new integration method for area detector records, nearly complete intensity data could be gained allowing for structure refinements of similar quality as for untwinned crystals (e.g. at 100 K: wR2 = 0.050, R = 0.020 for all reflections). With rising temperature, the monoclinic angle approaches continuously 90°. For an ordering parameter Δβ = β?90° a 2nd‐order phase transition is observed with an exponent λ = 0.17. At the transition temperature of 280 K resulting from the fit, the monoclinic structure changes – with delay – to orthorhombic with the minimum super‐group Pnca, a = 7.243, b = 10.763, c = 8.457Å, R = 0.024, as found in an early structure determination at room temperature by Edwards 1971. In the chain‐like [MnF3(SO4)]2? anions, manganese(III) is octahedrally coordinated by two trans‐terminal and two trans‐bridging fluorine ligands as well as by the O atoms of two trans‐bridging sulfate ligands. At low temperature, the octahedral elongation by the Jahn‐Teller effect alternates between a F–Mn–F and an O–Mn–O axis (antiferrodistortive ordering). All bridges are asymmetric. From about 320 K on they become symmetric. Due to 2D dynamical Jahn‐Teller effect all octahedra appear compressed. All compounds A2[MnF3(SO4)] show 1D antiferromagnetism. The antiferrodistortive Jahn‐Teller order at low temperatures and the small bridge angles explain the much lower magnetic exchange energies and their inverse relation to the bridge angles as compared with other fluoromanganate(III) chain compounds with the usual ferrodistortive ordering.  相似文献   

16.
Synthesis, Crystal Structure, and Solid State Phase Transition of Te4[AsF6]2·SO2 The oxidation of tellurium with AsF5 in liquid SO2 yields Te42+[AsF6]2 which can be crystallized from the solution in form of dark red crystals as the SO2 solvate. The crystals are very sensitive against air and easily lose SO2, so handling under SO2 atmosphere or cooling is required. The crystal structure was determined at ambient temperature, at 153 K, and at 98 K. Above 127 K Te4[AsF6]2·SO2 crystallizes orthorhombic (Pnma, a = 899.2(1), b = 978.79(6), c = 1871.61(1) pm, V = 1647.13(2)·106pm3 at 297 K, Z = 4). The structure consists of square‐planar Te42+ ions (Te‐Te 266 pm), octahedral [AsF6] ions and of SO2 molecules which coordinate the Te4 rings with their O atoms in bridging positions over the edges of the square. At room temperature one of the two crystallographically independent [AsF6] ions shows rotational disorder which on cooling to 153 K is not completely resolved. At 127 K Te4[AsF6]2·SO2 undergoes a solid state phase transition into a monoclinic structure (P1121/a, a = 866.17(8), b = 983.93(5), c = 1869.10(6) pm, γ = 96.36(2)°, V = 1554, 2(2)·106 pm3 at 98 K, Z = 4). All [AsF6] ions are ordered in the low temperature form. Despite a direct supergroup‐subgroup relationship exists between the space groups, the phase transition is of first order with discontinuous changes in the lattice parameters. The phase transition is accompanied by crystal twinning. The main difference between the two structures lies in the different coordination of the Te42+ ion by O and F atoms of neighbored SO2 and [AsF6] molecules.  相似文献   

17.
The crystal structure of Rb6Si10O23 at 296 and 773 K is determined using single-crystal X-ray diffraction. At room temperature the crystals are orthorhombic (space group Cm2m, a = 16.280(5) Å, b = 9.380(5) Å, c = 8.060(5) Å, Z = 2). At 698 K, a first-order phase transition occurs to a hexagonal phase (space group $P\bar 6$ , a = 9.475(5) Å, c = 8.200(5) Å, Z = 1). The silicon-oxygen tetrahedral frameworks of both polymorphs have the same topology: 12-membered channels running along axis c are connected through six-membered windows. The enthalpies of polymorphic transition and melting are determined to be 3.9 ± 0.3 and 160 ± 16 kJ/mol, respectively.  相似文献   

18.
A new zinc vanadate Zn2(OH)VO4 has been synthesized by an electrochemical-hydrothermal method and characterized by single crystal X-ray diffraction. The compound crystallizes in the orthorhombic system, space group Pnma, a = 14.645(1) Å, b = 6.0215(5) Å, c = 8.8757(8) Å, V = 782.7(1) Å3, Z = 4, measured at 223 K. In the structure, rutile-type [ZnO6] octahedral chains are interconnected by [VO4] tetrahedra to form a framework of composition [Zn(OH)VO4], the voids of which are filled by Zn cations with trigonal bipyramidal and octahedral coordination. The structure is closely related to that of the adamite-type phases and the minerals descloizite PbZn(OH)VO4 and tsumcorite Pb0.5Zn(H2O)AsO4.  相似文献   

19.
1‐Isopropylidene‐2‐methylhydrazine ( 1 ), 1‐isopropylidene‐2‐hydroxyethylhydrazine ( 2 ) and 1‐isopropylidene‐2‐formylhydrazine ( 3 ) were synthesized by reaction of the corresponding hydrazine with an excess of acetone in the presence of a drying agent (anhydrous sodium sulfate or barium oxide). All compounds 1 – 3 were characterized by elemental analysis, coupled gas chromatography‐mass spectrometry (GC–MS), multinuclear NMR spectroscopy (1H, 13C and 15N) and vibrational spectroscopy (infrared and Raman). Compounds 1 and 2 are liquid at room conditions and their density was measured by means of a picnometer, however, (at room conditions) compound 3 is a solid and its crystal density and structure were determined by low temperature X‐ray diffraction techniques (monoclinic, P21/n, Z = 4, a = 5.666(1) Å, b = 6.254(1) Å, c = 15.277(4) Å, β = 91.30(2)°, V = 541.2(2) Å3). The structure of hydrazone 3 is discussed in detail and compared to that of monoformylhydrazine. Finally, the (gas phase) structure of compound 3 was optimized using DFT calculations (B3LYP/6‐31+G(d, p)) and its NBO charges are reported.  相似文献   

20.
Cooling of VOCl3 below its melting point (196 K) yields an amorphous phase, which transforms into the crystalline state upon further cooling. The crystallization is accompanied by a remarkable change in color from pale yellow to deep orange. A single crystal has been grown from the amorphous phase. VOCl3 crystallizes in the orthorhombic system, space group Pnma, with lattice parameters a = 4.963(1), b = 9.140(4), c = 11.221(5)Å at 133 K; Z = 4. The 35Cl-NQR experiments show two signals at approximately 11.4 MHz of intensity 2:1, which implies two different crystallographic sites for chlorine atoms, in agreement with the centrosymmetric space group Pnma. The crystal structure exhibits isolated tetrahedral molecules VOCl3 lying on a mirror plane and stacked with their VO axis along [100] to form trigonal prismatic columns. A close relationship exists with the structure of AsBr3, in which the lone pair occupies the position corresponding to the oxygen atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号