首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Samarium powder was applied as a catalyst for single electron transfer‐living radical polymerization (SET‐LRP) of acrylonitrile (AN) in 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) with 2‐bromopropionitrile as initiator and N,N,N,N′‐tetramethylethylenediamine as ligand. First‐order kinetics of polymerization with respect to the monomer concentration, linear increase of the molecular weight with monomer conversion, and the highly syndiotactic polyacrylonitrile (PAN) obtained indicate that the SET‐LRP of AN could simultaneously control molecular weight and tacticity of PAN. An increase in syndiotacticity of PAN obtained in HFIP was observed compared with that obtained by SET‐LRP in N,‐N‐dimethylformamide (DMF). The syndiotacticity markedly increased with the HFIP volume. The syndiotacticity of PAN prepared by SET‐LRP of AN using Sm powder as catalyst in DMF was higher than that prepared with Cu powder as catalyst. The increase in syndiotacticity of PAN with Sm content was more pronounced than the increase in its isotacticity. The block copolymer PAN‐b‐polymethyl methacrylate (52,310 molecular weight and 1.34 polydispersity) was successfully prepared. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Isobornyl methacrylate (IBMA), a bulky hydrophobic methacrylate, undergoes very fast polymerization, in bulk, with Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA)/ethyl‐2‐bromoisobutyrate system, at ambient temperature. IBMA also undergoes a spontaneous initiator‐free polymerization, at ambient temperature, with Cu(I)Br/PMDETA catalytic system in dimethyl sulfoxide–water mixtures. The rate of the polymerization is seen to increase with the water content up to 80 mol % of water. A possible intervention of air in initiation is proposed. The active Cu(0) formed by the disproportionation of Cu(I) species in aqueous medium probably plays a vital role for a possible air‐initiation of IBMA via single electron transfer‐living radical polymerization (SET‐LRP) mechanism. A high tolerance level to water under SET‐LRP conditions is demonstrated. The poly(IBMA) samples obtained exhibit low molecular weight distributions (1.1–1.3). Similar behavior was not observed with other common methacrylates such as methyl methacrylate, t‐butyl methacrylate, cyclohexyl methacrylate, and benzyl methacrylate. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
4.
A series of 2,6‐bis(imino)pyridines, as common ligands for late transition metal catalyst in ethylene coordination polymerization, were successfully employed in single‐electron transfer‐living radical polymerization (SET‐LRP) of methyl methacrylate (MMA) by using poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) (P(VDF‐co‐CTFE)) as macroinitiator with low concentration of copper catalyst under relative mild‐reaction conditions. Well‐controlled polymerization features were observed under varied reaction conditions including reaction temperature, catalyst concentration, as well as monomer amount in feed. The typical side reactions including the chain‐transfer reaction and dehydrochlorination reaction happened on P(VDF‐co‐CTFE) in atom‐transfer radical polymerization process were avoided in current system. The relationship between the catalytic activity and the chemical structure of 2,6‐bis(imino)pyridine ligands was investigated by comparing both the electrochemical properties of Cu(II)/2,6‐bis(imino)pyridine and the kinetic results of SET‐LRP of MMA catalyzed with different ligands. The substitute groups onto N‐binding sites with proper steric bulk and electron donating are desirable for both high‐propagation reaction rate and C? Cl bonds activation capability on P(VDF‐co‐CTFE). The catalytic activity of Cu(0)/2,6‐bis(imino)pyridines is comparable with Cu(0)/2,2′‐bipyridine under the consistent reaction conditions. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4378–4388  相似文献   

5.
Single electron transfer‐living radical polymerization (SET‐LRP) represents a robust and versatile method for the rapid synthesis of macromolecules with defined architecture. The present article describes the polymerization of methyl methacrylate by SET‐LRP in protic solvent mixtures. Herein, the polymerization process was catalyzed by a straightforward Cu(0)wire/Me6‐TREN catalyst while initiation was obtained by toluenesulfonyl chloride. All experiments were conducted at 50 °C and the living polymerization was demonstrated by kinetic evaluation of the SET‐LRP. The process follows first order kinetic until all monomer is consumed which was typically achieved within 4 h. The molecular weight increased linearly with conversion and the molecular weight distributions were very narrow with Mw/Mn ~ 1.1. Detailed investigations of the polymer samples by MALDI‐TOF confirmed that no termination took place and that the chain end functionality is retained throughout the polymerization process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2236–2242, 2010  相似文献   

6.
We demonstrate the living radical polymerization of tert‐butyl acrylate (tBA) applying the SET mechanism, employing methyl 2‐bromopropionate (MBP) as initiator in dimethyl sulfoxide (DMSO) at ambient temperature. It is observed that introducing copper bromide into the catalyst system is necessary for controlling on the SET‐LRP polymerization of tBA. In this work, we make major investigation for the effect of the different stoichiometry quantity of copper bromide on the polymerization. Experiments show that the polymerization achieves better control with increasing the stoichiometry quantity of copper(II) deactivator. The structural analysis of the resulting polymers by 1H NMR demonstrates the successful synthesis of poly(tBA)s by SET‐LRP in DMSO. Moreover, this work is helpful to the SET‐LRP of other monomers and is expected to expand the application of SET‐LRP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2793–2797, 2010  相似文献   

7.
In this work, bimetallic zero‐valent metal (Fe(0) powder and Cu(0) powder) was used to mediate the single electron transfer‐living radical polymerization (SET‐LRP) of methyl methacrylate at 25 °C in dimethyl sulfoxide. Different feed ratios of [Fe(0)]0/[Cu(0)]0 (0/1.5, 0.5/1, 0.75/0.75, 1/0.5, and 1.3/0.2) were explored. With the increase of Fe(0) feed, the polymerization rate was mildly depressed with a prolonged induction period. While, the control over the molecular weights was improved upon the increase of Fe(0). A best control (initiation efficiency = 91%) was achieved at [Fe(0)]0/[Cu(0)]0 = 1/0.5. A further increase of Fe(0) to the feed ratio of [Fe(0)]0:[Cu(0)]0 = 1.3: 0.2 led to a uncontrolled polymerization. Explorations of available solvents and ligands for this polymerization confirmed the SET‐LRP mechanism. It was suggested that Fe(0) might act as a dual role in this process: one was the activation agent for Cu(0), which favored a better control over the molecular weights; The other was an alternative catalyst for the activation of R‐X or Pn‐X to generate radicals, which assured a comparable polymerization rate as that of Cu(0). This work provided an alternative and economical catalyst for SET‐LRP, and would eventually reinforce the SET‐LRP technique. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
Single‐electron transfer living radical polymerization (SET‐LRP) has developed as a reliable, robust and straight forward method for the construction well‐defined polymers. To span an even larger variety of functional monomers, we investigated the copolymerization of methyl methacrylate with methacrylic acid by SET‐LRP. Copolymerizations were catalyzed by Cu(0)/Me6‐TREN and performed in MeOH/H2O mixtures at 50 °C. The SET‐LRP copolymerizations of varying methacrylic acid content were evaluated by kinetic experiments. At low (2.5%) and moderate (10%) MAA loadings, the copolymerizations obeyed perfect first order kinetics (kpapp = 0.008 min?1 and kpapp = 0.006 min?1) and exhibited a linear increase in molecular weights with conversion providing narrow molecular weight distributions. The SET‐LRP of MMA/25%‐MAA was found to be significantly slower (kpapp = 0.0035 min?1). However, a reasonable first‐order kinetics in monomer consumption was maintained, and the control of the polymerization process was preserved since the molecular weight increased linearly with conversion and could therefore be adjusted. This work demonstrates that the copolymerization of methacrylic acid by SET‐LRP is feasible and the design of well‐defined macromolecules comprising acidic functionality can be achieved. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

9.
Single‐electron transfer living radical polymerization (SET‐LRP) proceeds by an outer‐sphere single‐electron transfer mechanism that induces a heterolytic bond cleavage of the initiating and propagating R‐X (where X = Cl, Br, and I) species. Therefore, unlike the homolytic bond cleavage mechanism claimed for ATRP, SET‐LRP is expected to show a small dependence of the nature of the halide group on the apparent rate constant of activation. This means the R‐X with X = Cl, Br, and I must all be efficient initiators for SET‐LRP and no chain transfer must be observed in the case of initiators with X = Br and I. Here, we report the SET‐LRP of methyl acrylate initiated with the alkyl chlorides methyl‐2‐chloropropionate (MCP) and chloroform (CHCl3) and catalyzed by Cu(0)/Me6‐TREN/CuCl2 in DMSO at 25 °C. A combination of kinetic and structural analysis was used to elucidate the MCP and CHCl3 initiating behavior under SET‐LRP conditions, and to demonstrate the very small dependence of the SET‐LRP apparent rate constant of propagation on X while providing polymers with well defined architecture. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4917–4926, 2008  相似文献   

10.
Computational studies on the heterolytic bond dissociation energies and electron affinities of methyl 2‐bromopropionate (MBP) and ethyl 2‐bromoisobutyrate (EBiB) in the dissociative electron transfer (DET) step of single electron transfer living radical polymerization (SET‐LRP) of methyl acrylate (MA) combined with kinetic experiments were performed in an effort to design the most efficient initiation system. This study suggests that EBiB is more effective than MBP in the SET‐LRP of acrylates catalyzed by Cu(0) wire, thus being a true electronic mimic of the dormant PMA species. EBiB allows for a more predictable dependence of the molecular weight evolution and distribution. This is exemplified by the absence of a deviation in the PMA molecular weight from theoretical values at low conversions, as a result of a faster SET activation with EBiB than with MBP. The enhanced control over molecular weight evolution was also observed in the SET‐LRP of MA initiated with bifunctional initiators similar in structure to MBP and EBiB, suggesting a higher reactivity than MBP in the SET activation, which matches closely that of the polymer dormant chains. The use of bifunctional initiators in conjunction with activated Cu(0) wire in SET‐LRP allows for dramatically accelerated polymerizations, although still providing for exceptional control of the molecular weight evolution and distribution. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Sn(0)‐mediated single electron transfer‐living radical polymerization (SET‐LRP) of acrylonitrile (AN) with carbon tetrachloride (CCl4) as initiator and hexamethylenetetramine (HMTA) as ligand in N, N‐dimethylformamide (DMF) was studied. The polymerization obeyed first order kinetic. The molecular weight of polyacrylonitrile (PAN) increased linearly with monomer conversion and PAN exhibited narrow molecular weight distributions. Increasing the content of Sn(0) resulted in an increase in the molecular weight and the molecular weight distribution. Effects of ligand and initiator were also investigated. The block copolymer PAN‐b‐polymethyl methacrylate with molecular weight at 126,130 and polydispersity at 1.36 was successfully obtained. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Single electron transfer‐living radical polymerization (SET‐LRP) represents a robust and versatile method for the rapid synthesis of macromolecules with defined architecture. The synthesis of poly(methyl methacrylate) via SET‐LRP in dimethyl sulfoxide (DMSO) by using CCl4 as initiator is demonstrated in this work. Resorting to a rather simple Cu(0)/Me6‐TREN catalyst a method was established that allowed for the straightforward design of well‐defined poly(methyl methacrylate). The reactions were performed at various temperatures (25, 50, 60, and 80 °C) and complete monomer conversion could be achieved. The polymerizations obeyed first order kinetic, the molecular weights increased linearly with conversion and the polymers exhibited narrow molecular weight distributions all indicating the livingness of the process. By providing a small amount of hydrazine to the reaction mixture the polymerization could be conducted in presence of air omitting the need for any elaborated deoxygenation procedures. This methodology offers an elegant way to synthesize functionalized poly(methyl methacrylate) with perfect control over the polymerization process as well as molecular architecture. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2243–2250, 2010  相似文献   

13.
The Cu(0)/Me6‐TREN‐catalyzed single‐electron transfer mediated living radical polymerization (SET‐LRP) of methyl acrylate in the presence of the classic 4‐methoxyphenol free radical inhibitor was investigated. Kinetic experiments, combined with 1H NMR, and MALDI‐TOF MS analysis of the resulting polyacrylates demonstrated that SET‐LRP is a robust synthetic method that does not require the purification of the monomers to remove the radical inhibitor. It is anticipated that these results will contribute to the expansion of technological and fundamental applications of SET‐LRP since it allows the synthesis of polymers with a structural perfection that previously was not accessible by any other method, starting from unpurified monomers, solvents, initiators, and ligands. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3174–3181, 2008  相似文献   

14.
Single Electron Transfer‐Living Radical Polymerization (SET‐LRP) represents a robust and versatile method for the rapid synthesis of macromolecules with well defined topology. In SET‐LRP, certain combinations of solvents and ligands facilitate the disproportionation of in situ generated Cu(I) species into “nascent” Cu(0) and Cu(II) species. A combination of heterogeneous and “nascent” Cu(0) activation yields polymers with very high chain end functionality. Under suitable conditions the tolerance toward oxygen must be increased since Cu(0), the activator in SET‐LRP, acts as an oxygen scavenger in all inert gas purification systems. Here we demonstrate that SET‐LRP of methyl acrylate can be conducted in the presence of air. The addition of a small amount of reducing agent hydrazine hydrate to the reaction mixture reduces Cu2O generated by the oxidation of Cu(0) with air, regenerating Cu(0) and allowing for the synthesis of polymers with predictable molecular weight and perfect retention of chain end functionality. The kinetics plots obtained under these conditions were identical to these generated by degassed samples. High conversions were achieved within a very short reaction time. In these SET‐LRP experiments, the reagents were not deoxygenated or subjected to standard degassing procedures such as freeze‐pump‐thaw or nitrogen sparging. This simple SET‐LRP procedure provides an efficient and economical approach to the synthesis of functional macromolecules. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1190–1196, 2010  相似文献   

15.
Use of ionic liquids as reaction media was investigated in the design of an environmentally friendly single electron transfer‐living radical polymerization (SET‐LRP) for acrylonitrile (AN) without any ligand by using Fe(0) wire as catalyst and 2‐bromopropionitrile as initiator. 1‐Methylimidazolium acetate ([mim][AT]), 1‐methylimidazolium propionate ([mim][PT]), and 1‐methylimidazolium valerate ([mim][VT]) were applied in this study. First‐order kinetics of polymerization with respect to the monomer concentration, linear increase of the molecular weight, and narrow polydispersity with monomer conversion showed the controlled/living radical polymerization characters. The sequence of the apparent polymerization rate constant of SET‐LRP of AN was kapp ([mim][AT]) > kapp ([mim][PT]) > kapp ([mim][VT]). The living feature of the polymerization was also confirmed by chain extensions of polyacrylonitrile with methyl methacrylate. All three ionic liquids were recycled and reused and had no obvious effect on the controlled/living nature of SET‐LRP of AN. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Alcohols are known to promote the disproportionation of Cu(I)X species into nascent Cu(0) and Cu(II)X. Therefore, alcohols are expected to be excellent solvents that facilitate the single‐electron transfer mediated living radical polymerization (SET‐LRP) mediated by nascent Cu(0) species. This publication demonstrates the ultrafast SET‐LRP of methyl acrylate initiated with bis(2‐bromopropionyloxy)ethane and catalyzed by Cu(0)/Me6‐TREN in methanol, ethanol, 1‐propanol, and tert‐butanol and in their mixture with water at 25 °C. The structural analysis of the resulting polymers by a combination of 1H NMR and MALDI‐TOF MS demonstrates the synthesis of perfectly bifunctional α,ω‐dibromo poly(methyl acrylate)s by SET‐LRP in alcohols. Moreover, this work provides an expansion of the list of solvents available for SET‐LRP. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2745–2754, 2008  相似文献   

17.
Single electron transfer‐living radical polymerization (SET‐LRP) of methyl acrylate (MA) in methanol, catalyzed with nonactivated and activated Cu(0) wires, was performed in the presence of nondeoxygenated reagents and was investigated under a simple blanket of nitrogen. The addition of a small amount of hydrazine hydrate mediates the deoxygenation of the reaction mixture by the consumption of oxygen through its use to oxidize Cu(0) to Cu2O, followed by the reduction of Cu2O with hydrazine back to the active Cu(0) catalyst. SET‐LRP of MA in methanol in the presence of air requires a smaller dimension of Cu(0) wire, compared to the nonactivated Cu(0) wire counterpart. Activation of Cu(0) wire allowed the polymerization in air to proceed with no induction period, linear first‐order kinetics, linear correlation between the molecular weight evolution with conversion, and narrow molecular weight distribution. The retention of chain‐end functionality of α,ω‐di(bromo) poly(methyl acrylate) (PMA) prepared by SET‐LRP was demonstrated by a combination of experiments including 1H NMR spectroscopy and matrix‐assisted laser desorption ionization–time of flight mass spectrometry after thioetherification of α,ω‐di(bromo) PMA with thiophenol. In SET‐LRP of MA in the presence of limited air, bimolecular termination is observed only above 85% conversion. However, for bifunctional initiators, the small amount of bimolecular termination observed at high conversion maintains a perfectly bifunctional polymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Single electron transfer‐living radical polymerization (SET‐LRP) provides an excellent tool for the straightforward synthesis of well‐defined macromolecules. Heterogeneous Cu(0)‐ catalysis is employed to synthesize a novel photoresist material with high control over the molecular architecture. Poly(γ‐butyrolactone methacrylate)‐co‐(methyladamantly methacrylate) was synthesized. Kinetic experiments were conducted demonstrating that both monomers, γ‐butyrolactone methacrylate (GBLMA) and methyl adamantly methacrylate (MAMA), are successfully homopolymerized. In both cases polymerization kinetic is of first order and the molecular weights increase linearly with conversion. The choice of a proper solvent was decisive for the SET‐LRP process and organic solvent mixtures were found to be most suitable. Also, the kinetic of the copolymerization of GBLMA and MAMA was investigated. Following first order kinetics in overall monomer consumption and exhibiting a linear relationship between molecular weights and conversion a “living” process was established. This allowed for the straightforward synthesis of well‐defined photoresist polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2251–2255, 2010  相似文献   

19.
In this study, the polymerization of (2‐hydroxyethyl) acrylate (HEA), in polar media, using Cu(0)‐mediated radical polymerization also called single‐electron transfer–living radical polymerization (SET‐LRP) is reported. The kinetics aspects of both the homopolymerization and the copolymerization from a poly(ethylene oxide) (PEO) macroinitiator were analyzed by 1H NMR. The effects of both the ligand and the solvent were studied. The polymerization was shown to reach very high monomer conversions and to proceed in a well‐controlled fashion in the presence of tris[2‐(dimethylamino)ethyl]amine Me6‐TREN and N, N,N′, N″, N″‐pentamethyldiethylenetriamine (PMDETA) in dimethylsulfoxide (DMSO). SET‐LRP of HEA was also led in water, and it was shown to be faster than in DMSO. In pure water, Me6‐TREN allowed a better control over the molar masses and polydispersity indices than PMDETA and TREN. Double hydrophilic PEO‐b‐PHEA block copolymers, exhibiting various PHEA block lengths up to 100 HEA units, were synthesized, in the same manner, from a bromide‐terminated PEO macroinitiator. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
A simple method for the activation of the Cu(0) wire used as catalyst in single‐electron transfer living radical polymerization (SET‐LRP) is reported. The surface of Cu(0) stored in air is coated with a layer of Cu2O. It is well established that Cu2O is a less reactive catalyst for SET‐LRP than Cu(0). We report here the activation of the Cu(0) wire under nitrogen by the reduction of Cu2O from its surface to Cu(0) by treatment with hydrazine hydrate. The kinetics of SET‐LRP of methyl acrylate (MA) catalyzed with activated Cu(0) wire in dimethyl sulfoxide (DMSO) at 25 °C demonstrated a dramatic acceleration of the polymerization and the absence of the induction period observed during SET‐LRP catalyzed with nonactivated Cu(0) in several laboratories. Exposure of the activated Cu(0) wire to air results in a lower apparent rate constant of propagation because of gradual oxidation of Cu(0) to Cu2O. This dramatic acceleration of SET‐LRP is similar to that observed with commercial Cu(0) nanopowder except that the polymerization provides excellent molecular weight evolution, very narrow molecular weight distribution and high polymer chain‐end functionality. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号