首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of anthraquinone‐2,6‐disulfonic acid disodium salt (Na2a‐2,6‐dad) with CuII, MnII, and ZnII with 1,10‐phenanthroline (phen) or 2,2′‐dipyridyl (bipy) under hydrothermal conditions formed two or three‐dimensional supramolecules of stoichiometries [Cu(a‐2,6‐dad)(phen)(H2O)3](H2O)4 ( 1 ), [Mn(a‐2,6‐dad)(bipy)2(H2O)](H2O)2 ( 2 ), and [Zn(a‐2,6‐dad)(bipy)2(H2O)](H2O)2 ( 3 ), which were synthesized and characterized. The arrangement around each metal atom is distorted octahedral. The ligands in all the compounds are engaged in intermolecular hydrogen bonding leading to the formation of hydrogen‐bonded networks, the compounds show novel π–π stacking interactions. Photoluminescence measurements indicate that the compound [Zn(a‐2,6‐dad)(bipy)2(H2O)](H2O)2 ( 3 ) shows strong blue luminescence in the solid state at room temperature.  相似文献   

2.
Two cobalt phosphonates, [Co2(2,2′‐bpy)2(H2O)(pbtcH)] ( 1 ) and [Co2(H2O)(pbtcH)(phen)2] ( 2 ; pbtcH5=5‐phosphonatophenyl‐1,2,4‐tricarboxylic acid, 2,2′‐bpy=2,2′‐bipyridine, phen=1,10‐phenanthroline), with layer structures are reported. Compound 1 contains O‐C‐O and O‐P‐O bridged tetramers of Co4, which are further connected by pbtcH4? units to form a layer. In compound 2 , the cobalt tetramers made up of water‐bridged Co2 dimers and O‐P‐O linkages are connected into a layer by pbtcH4? units. Upon dehydration, compounds 1 and 2 experience single‐crystal‐to‐single‐crystal (SC–SC) structural transformations to form [Co2(2,2′‐bpy)2(pbtcH)] ( 1 a ) and [Co2(pbtcH)(phen)2] ( 2 a ), respectively. The process is reversible in each case. Notably, a breathing effect is observed for 1 , accompanied by pore opening and closing due to the reorientation of the coordinated 2,2′‐bpy molecules. The transformation was also monitored by in situ IR measurements. Magnetic studies reveal that antiferromagnetic interactions are mediated between the magnetic centers in compounds 1 and 1 a , whereas ferromagnetic interactions are dominant in compound 2 .  相似文献   

3.
Two new Ni( Ⅱ) coordination polymers, {[Ni(tbip)(bipy)(H2O)]-0.5H2O}n 1 and [Ni(tbip)(phen)(H2O)]n 2 (Hatbip = 5-tert-butyl isophthalic acid, bipy = 2,2'-bipyridine, phen = 1,10-phenanthroline), have been synthesized under hydrothermal conditions and characterized by elemental analysis, X-ray diffraction, and IR spectroscopy. In the two polymers, H2tbip acts as a tridentate ligand. Compound 1 has a tbip bridged 1-D linear chain which is extended by hydrogen bonds into a 1-D double chain, while compound 2 exhibits a 1-D zigzag chain.  相似文献   

4.
Three cobalt(II) coordination polymers, [Co2(tatb)2(2,2′‐bipy)2 (H2O)2 · DMA · 2H2O] ( 1 ), [Co2(tatb)2(1,10‐phen)2(H2O)2 · 2H2O] ( 2 ) and [Co(tatb)(1,3‐dpp) · H2O] ( 3 ) (H3tatb = 4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)tribenzoic acid; 2,2′‐bipy = 2,2′‐bipyridyl; 1,10‐phen = 1,10‐phenanthroline; 1,3‐dpp = 1,3‐bis(pyridin‐4‐yl)propane), were synthesized solvothermally and characterized by single‐crystal and powder X‐ray diffraction (PXRD), as well as IR spectroscopy. Complexes 1 and 2 exhibit 1D double‐chain structures, which further connect into interesting 3D networks by hydrogen bond and strong π–π interactions. Complex 3 possesses 2D 44‐sql topology, which is packed parallel in an AA fashion. Moreover, thermal stability properties and photoluminescence properties of 1 , 2 and 3 were also investigated.  相似文献   

5.
The formation and structural aspects of some metal complexes of thiosalicylic acid (TSA) were studied. The μ‐bridging tetra‐coordinated Ru complex, [Ru(C6H4(CO2)(μ‐S)(H2O)]2 ( 1 ) was formed by hydrothermal reaction of TSA with RuCl3. The complexes [M(dtdb)(phen)(H2O)]n ( 2 – 4 ) (M = ZnII, CoII, NiII, dtdb = 2,2′‐dithiodibenzoate anion, phen = 1,10‐phenanthroline) were obtained by the slow diffusion technique and the in situ S–S bond formation was confirmed by elemental, spectral and X‐ray analysis. Reaction of TSA with CuCl2 and 2,2′‐bipyridine (bipy) under the slow diffusion technique yielded the dimer [Cu(tdb)(bipy)] ( 5 ) (tdb = thiodibenzoic acid), where the in situ generation of 2,2′‐thiodibenzoic acid was observed.  相似文献   

6.
A new metal‐organic network [Co3(tbip)3(H2O)4] · 2H2O ( 1 ) (H2tbip = 5‐tert‐butyl‐isophthalic acid) was synthesized through the ionothermal reaction of H2tbip, cobalt nitrate, and [bmim]Br ionic liquid ([bmim]Br = 1‐butyl‐3‐methylimidazolium bromide). It exhibits a three‐dimensional (3D) framework with NaCl topology based on trinuclear cobalt(II) clusters as nodes. The magnetic studies show that there exist antiferromagnetic interactions between the CoII ions.  相似文献   

7.
To investigate the influence of the non‐covalent interactions, such as hydrogen‐bonding, π–π packing and d10–d10 interactions in the supramolecular motifs, three cyanido‐bridged heterobimetallic discrete complexes {Mn(bipy)2(H2O)[Ag(CN)2]}[Ag(CN)2] ( 1 ), {Mn(phen)2(H2O)[Au(CN)2]}2[Au(CN)2]2 · 4H2O ( 2 ), and {Cd(bipy)2(H2O)[Au(CN)2]}[Au(CN)2] ( 3 ) (bipy = 2,2′‐bipyridine, and phen = 1,10‐phenanthroline), which are based on dicyanidometallate(I) groups with 1:2 stoichiometry of metal ions and 2,2′‐bipyridyl‐like co‐ligands were synthesized and structurally characterized. In compound 1 , hydrogen bonding and π–π interactions governed the supramolecular contacts. In compound 2 , the incorporation of aurophilic, hydrogen bonding and π–π interactions result in a 3D supramolecular network. In compound 3 , hydrogen bonding and π–π stacking interactions result in a 2D supramolecular layer. In the three complexes, hydrogen‐bonding, π–π packing and/or d10–d10 interactions can play important roles in increasing the dimensionality of supramolecular assemblies.  相似文献   

8.
RuII compounds have been universally investigated due to their unique physical and chemical properties. In this paper, a new RuII compound based on 2,2′‐bipy and Hpmtz [2,2′‐bipy = 2,2′‐bipyridine, Hpmtz = 5‐(2‐pyrimidyl)‐1H‐tetrazole], namely [Ru(2,2′‐bipy)2(pmtz)][PF6] · 0.5H2O was prepared and characterized by elemental analysis, IR and single‐crystal X‐ray diffraction. [Ru(2,2′‐bipy)2(pmtz)][PF6] · 0.5H2O shows a mononuclear structure and forms a three‐dimensional network by non‐classic hydrogen bonds. The ability of generation of ROS (reactive oxygen species) makes it has a low phototoxicity IC50 (half‐maximal inhibitory concentration) after Xenon lamp irradiation on Hela cells in vitro. The results demonstrate that [Ru(2,2′‐bipy)2(pmtz)][PF6] · 0.5H2O with high light toxicity and low dark toxicity may be a potential candidate for photodynamic therapy.  相似文献   

9.
The two complexes of composition Cu2(OAc)4(phen)(H2O)2 ( 1 ) andCu2(OAc)4(phen)2(H2O) ( 2 ) have been synthesized and characterized by chemical analysis and IR and electronic spectroscopies. Compound 2 has the structure of a dimer with a phenanthroline molecule and two monodentate acetate groups coordinated to each copper atom and a water molecule as the only bridging ligand between them. Each copper atom has a distorted square‐planar pyramidal coordination, determined by two oxygen atoms at 1.94(3) and 1.959(3) Å, two nitrogen atoms at 2.023(4) Å and the oxygen atom of the bridging water molecule at 2.289(2) Å. The distance between the two copper atoms is of 4.29 Å and the angle Cu(1)‐O(3)‐Cu(1A) 139.2(2)°. The water molecule is involved in two intramolecular hydrogen bonds with non coordinated oxygen atoms. The distance between the molecules of phenanthroline is 3.75 Å. Magnetic and EPR results for Cu2(OAc)4(phen)(H2O)2 ( 1 ), Cu2(OAc)4(phen)2(H2O) ( 2 ), Cu2(OAc)4(bipy) ( 3 ) and Cu2(OAc)4(bipy)2(H2O)2 ( 4 ) have been analysed and compared. For 1 and 3 an antiferromagnetic dimer unit [Cu2(μ‐OAc)4] with 2J = ?325 and ?292 cm?1, respectively, and other two copper atoms without significant magnetic interaction are present. Triplet signals are detected in the EPR spectra. In 2 and 4 there is no practically magnetic exchange and the orthorhombic signals are observed in the EPR spectra.  相似文献   

10.
Compound {[Cu(II)/Cu(I)]2(ophen)4(Htpt)}?2H2O ( 1 ) was obtained by hydrothermal reaction. Compound 1 is a mixed‐valence copper coordination complex with a different coordination environment. The X‐ray structural analysis of 1 revealed two crystallographically independent dimeric [Cu2(ophen)2]+ units bridged by two µ1‐carboxylate groups of the tpt ligand into a butterfly‐shaped molecule in the crystal structure. Compound [Cu(I)3(CN)3(phen)3] ( 2 ) was synthesized using ethanol instead of water, and consisted of an infinite helix chain formed from [Cu(I)(phen)]+ units bridged by cyano groups. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
In the title compound, {[Co2(C14H8O4)2(C10H8N2)2(H2O)2]·2C14H10O4}n, each CoII ion is six‐coordinate in a slightly distorted octahedral geometry. Both CoII ions are located on twofold axes. One is surrounded by two O atoms from two biphenyl‐2,2′‐dicarboxylate (dpa) dianions, two N atoms from two 4,4′‐bipyridine (bpy) ligands and two water molecules, while the second is surrounded by four O atoms from two dpa dianions and two N atoms from two bpy ligands. The coordinated dpa dianion functions as a κ3‐bridge between the two CoII ions. One carboxylate group of a dpa dianion bridges two adjacent CoII ions, and one O atom of the other carboxylate group also chelates to a CoII ion. The CoII ions are bridged by dpa dianions and bpy ligands to form a chiral sheet. There are several strong intermolecular hydrogen bonds between the H2dpa solvent molecule and the chiral sheet, which result in a sandwich structure.  相似文献   

12.
Four new metal‐organic frameworks [Cu2(2,2′‐bipy)2(ox)(H2O)2]·(H2bptc) ( 1 ), [Cu(bptc)0.5(phen)(H2O)]·H2O ( 2 ), Co2(bptc)(bmb)1.5 ( 3 ) and [Cd2(bptc) (bmb)]·3H2O ( 4 ) (H4bptc = 3,3′,4,4′‐biphenyltetracarboxylic acid, ox = oxalate, phen = 1,10‐phenanthroline, 2,2′‐bipy = 2,2′‐bipyridine and bmb = 4,4′‐bis((1H‐imidazol‐1‐yl)methyl)biphenyl), were obtained by reactions of the corresponding metal salts with H4bptc and N‐containing auxiliary ligands and their structures were determined by single‐crystal X‐ray diffraction. The results reveal that 1 has a 0‐D structure consisting of discrete ionic entities, while 2 features a 1‐D ladder structure. Additionally, there exist π‐π stacking and intermolecular hydrogen‐bonding interactions in 1 and 2 , respectively, forming 3‐D supramolecular structures. In 3 ‐ 4 , undulating 2‐D metal‐bptc layer structures are formed with two different coordination modes of bptc carboxylate groups, respectively, which are further extended by bmb into 3‐D structures. Magnetic properties of 1 and 3 have been studied. The photoluminescence property of 4 has also been investigated. Moreover, nonlinear optical measurements showed that 4 displayed a second‐harmonic‐generation (SHG) response of 0.7 times of that for urea.  相似文献   

13.
Three coordination compounds with dimensions from 0D to 2D, namely, [Co(bppdca)2(HL1)2] ( 1 ) [Co(bppdca)(L2)(H2O)] · 2H2O ( 2 ) and [Co(bppdca)(L3)] · 3H2O ( 3 ) [bppdca = N,N′‐bis(pyridine‐3‐yl)pyridine‐2,6‐dicarboxamide, H2L1 = 2,5‐pyridinedicarboxylic acid, H2L2 = 4,4′‐oxybisbenzoic acid, H2L3 = 2‐carboxymethylsulfanyl nicotinic acid] were hydrothermally synthesized and structurally characterized. Single crystal X‐ray diffraction analysis reveals that complex 1 is a discrete 0D complex, in which the bppdca ligand and the H2L1 act as the terminal groups to coordinate with the CoII ions. In coordination polymer 2 , two bppdca ligands coordinate in anti configuration with two CoII ions to generate a 28‐membered Co2(bppdca)2 loop, which is further extended into 1D ladder‐like double chain by pairs of L2 ligands. In 3 , the CoII ions are linked by bppdca ligands to generate 1D wave‐like chain, which is further connected by the L3 to form a 2D network. Finally, the coordination compounds 1 – 3 are extended into 3D supramolecular frameworks through the hydrogen bonding interactions. The CoII ions and the bppdca ligands in the title coordination compounds exhibit different coordination characters and conformations. The effect of organic dicarboxylates with different rigidity and length on the structures of CoII coordination compounds was investigated. In addition, the fluorescence and electrochemical behaviors of coordination compounds 1 – 3 were reported.  相似文献   

14.
The title compound, [Co(C7H6NO2)2(H2O)4]·4H2O, contains a CoII ion lying on a crystallographic inversion centre. The CoII ion is octahedrally coordinated by two 6‐methylpyridine‐3‐carboxylate ligands in axial positions [Co—O = 2.0621 (9) Å] and by four water molecules in the equatorial plane [Co—O = 2.1169 (9) and 2.1223 (11) Å]. There are also four uncoordinated water molecules. The 6‐methylpyridine‐3‐carboxylate ligands are bound to the CoII ion in a monodentate manner through a carboxylate O atom. There is one strong intramolecular O—H...O hydrogen bond, and six strong intermolecular hydrogen bonds of type O—H...O and one of type O—H...N in the packing, resulting in a complex three‐dimensional supramolecular structure.  相似文献   

15.
A new coordination polymer (CP), namely poly[(μ‐4,4′‐bipyridine)(μ3‐3,4′‐oxydibenzoato)cobalt(II)], [Co(C14H8O5)(C10H8N2)]n or [Co(3,4′‐obb)(4,4′‐bipy)]n ( 1 ), was prepared by the self‐assembly of Co(NO3)2·6H2O with the rarely used 3,4′‐oxydibenzoic acid (3,4′‐obbH2) ligand and 4,4′‐bipyridine (4,4′‐bipy) under solvothermal conditions, and has been structurally characterized by elemental analysis, IR spectroscopy, single‐crystal X‐ray crystallography and powder X‐ray diffraction (PXRD). Single‐crystal X‐ray diffraction reveals that each CoII ion is six‐coordinated by four O atoms from three 3,4′‐obb2? ligands, of which two function as monodentate ligands and the other as a bidentate ligand, and by two N atoms from bridging 4,4′‐bipy ligands, thereby forming a distorted octahedral CoN2O4 coordination geometry. Adjacent crystallographically equivalent CoII ions are bridged by the O atoms of 3,4′‐obb2? ligands, affording an eight‐membered Co2O4C2 ring which is further extended into a two‐dimensional [Co(3,4′‐obb)]n sheet along the ab plane via 3,4′‐obb2? functioning as a bidentate bridging ligand. The planes are interlinked into a three‐dimensional [Co(3,4′‐obb)(4,4′‐bipy)]n network by 4,4′‐bipy ligands acting as pillars along the c axis. Magnetic investigations on CP 1 disclose an antiferromagnetic coupling within the dimeric Co2 unit and a metamagnetic behaviour at low temperature resulting from intermolecular π–π interactions between the parallel 4,4′‐bipy ligands.  相似文献   

16.
Two new CdII complexes, [Cd( ces )(phen)] ( 1 ) and {[Cd( ces )(bpy)(H2O)](H2O)}2 ( 2 ), were prepared by slow solvent evaporation methods from mixtures of cis‐epoxysuccinic acid and Cd(ClO4)2 · 6H2O in the presence of phen or bpy co‐ligand ( ces = cis‐epoxysuccinate, phen = 1,10‐phenanthroline, and bpy = 2,2′‐bipyridine). Single‐crystal X‐ray diffraction analyses show that complex 1 has a one‐dimensional (1D) helical chain that is further assembled into a two‐dimensional (2D) sheet, and then an overall three‐dimensional (3D) network by the interchain C–H ··· O hydrogen bonds. Complex 2 features a dinuclear structure, which is further interlinked into a 3D supramolecular network by the co‐effects of intermolecular C–H ··· O and C–H ··· π hydrogen bonds as well as π ··· π stacking interactions. The structural differences between 1 and 2 are attributable to the intervention of different 2,2′‐bipyridyl‐like co‐ligands. Moreover, 1 and 2 exhibit intense solid‐state luminescence at room temperature, which mainly originates from the intraligand π→π* transitions of aromatic co‐ligands.  相似文献   

17.
To survey the influence of aza‐aromatic co‐ligands on the structure of Cadmium(II) sulfonates, three Cd(II) complexes with mixed‐ligand, [CdII(ANS)2(phen)2] ( 1 ), [CdII(ANS)2(2,2′‐bipy)2] ( 2 ) and [CdII(ANS)2(4,4′‐bipy)2]n ( 3 ) (ANS = 2‐aminonaphthalene‐1‐sulfonate; phen = 1,10‐phenanthroline; 2,2′‐bipy = 2,2′‐bipyridine; 4,4′‐bipy = 4,4′‐bipyridine) were synthesized by hydrothermal methods and structurally characterized by elemental analyses, IR spectra, and single crystal X‐ray diffraction. Of the three complexes, ANS consistently coordinates to Cd2+ ion as a monodentate ligand. While phen in 1 and 2,2′‐bipy in 2 act as N,N‐bidentate chelating ligands, leading to the formation of a discrete mononuclear unit; 4,4′‐bipy in 3 bridges two CdII atoms in bis‐monodentate fashion to produce a 2‐D layered network, suggesting that the conjugate skeleton and the binding site of the co‐ligands have a moderate effect on molecular structure, crystal stacking pattern, and intramolecular weak interactions. In addition, the three complexes exhibit similar luminescent emissions originate from the transitions between the energy levels of sulfonate anions.  相似文献   

18.
The title compound, [Cu2(C9H10NO3)2(NO3)2(C10H8N2)(H2O)2]n, contains CuII atoms and l ‐tyrosinate (l ‐tyr) and 4,4′‐bipyridine (4,4′‐bipy) ligands in a 2:2:1 ratio. Each Cu atom is coordinated by one amino N atom and two carboxylate O atoms from two l ‐tyr ligands, one N atom from a 4,4′‐bipy ligand, a monodentate nitrate ion and a water molecule in an elongated octahedral geometry. Adjacent Cu atoms are bridged by the bidentate carboxylate groups into a chain. These chains are further linked by the bridging 4,4′‐bipy ligands, forming an undulated chiral two‐dimensional sheet. O—H...O and N—H...O hydrogen bonds connect the sheets in the [100] direction. This study offers useful information for the engineering of chiral coordination polymers with amino acids and 4,4′‐bipy ligands by considering the ratios of the metal ion and organic components.  相似文献   

19.
In the title two‐dimensional coordination polymer, [Mn(1,4‐BDOA)(4,4‐bipy)(H2O)2]n [1,4‐BDOA2− is the p‐phenyl­ene­dioxy­di­acetate dianion (C10H8O6) and 4,4‐bipy is 4,4‐bi­pyridine (C10H8N2)], each MnII atom displays octahedral coordination by two O atoms of the 1,4‐BDOA2− groups, two N atoms of the 4,4‐bipy ligands and two solvent water mol­ecules. The MnII atom, 4,4‐bipy ligand and 1,4‐BDOA2− group occupy different inversion centres. Adjacent MnII atoms are bridged by 1,4‐BDOA2− groups and 4,4‐bipy ligands, forming a two‐dimensional network with Mn⋯Mn separations of 11.592 (2) and 11.699 (2) Å. Hydro­gen bonds from a water O—H group link the layers in the third dimension.  相似文献   

20.
Cyanide as a bridge can be used to construct homo‐ and heterometallic complexes with intriguing structures and interesting magnetic properties. These ligands can generate diverse structures, including clusters, one‐dimensional chains, two‐dimensional layers and three‐dimensional frameworks. The title cyanide‐bridged CuII–CoIII heterometallic compound, [CuIICoIII(CN)6(C4H11N2)(H2O)]n, has been synthesized and characterized by single‐crystal X‐ray diffraction analysis, magnetic measurement, thermal study, vibrational spectroscopy (FT–IR) and scanning electron microscopy/energy‐dispersive X‐ray spectroscopy (SEM–EDS). The crystal structure analysis revealed that it has a two‐dimensional grid‐like structure built up of [Cu(Hpip)(H2O)]3+ cations (Hpip is piperazinium) and [Co(CN)6]3− anions that are linked through bridging cyanide ligands. The overall three‐dimensional supramolecular network is expanded by a combination of interlayer O—H...N and N—H...O hydrogen bonds involving the coordinated water molecules and the N atoms of the nonbridging cyanide groups and monodentate cationic piperazinium ligands. A magnetic investigation shows that antiferromagnetic interactions exist in the title compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号