首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 739 毫秒
1.
An X‐ray dynamical diffraction Fraunhofer holographic scheme is proposed. Theoretically it is shown that the reconstruction of the object image by visible light is possible. The spatial and temporal coherence requirements of the incident X‐ray beam are considered. As an example, the hologram recording as well as the reconstruction by visible light of an absolutely absorbing wire are discussed.  相似文献   

2.
Novel X‐ray imaging of structural domains in a ferroelectric epitaxial thin film using diffraction contrast is presented. The full‐field hard X‐ray microscope uses the surface scattering signal, in a reflectivity or diffraction experiment, to spatially resolve the local structure with 70 nm lateral spatial resolution and sub‐nanometer height sensitivity. Sub‐second X‐ray exposures can be used to acquire a 14 µm × 14 µm image with an effective pixel size of 20 nm on the sample. The optical configuration and various engineering considerations that are necessary to achieve optimal imaging resolution and contrast in this type of microscopy are discussed.  相似文献   

3.
A new type of diffractive X‐ray optical elements is reported, which have been used as beam‐shaping condenser lenses in full‐field transmission X‐ray microscopes. These devices produce a square‐shaped flat‐top illumination on the sample matched to the field of view. The size of the illumination can easily be designed depending on the geometry and requirements of the specific experimental station. Gold and silicon beam‐shapers have been fabricated and tested in full‐field microscopes in the hard and soft X‐ray regimes, respectively.  相似文献   

4.
X‐ray microscopy is capable of imaging particles in the nanometer size range directly with sub‐micrometer spatial resolution and can be combined with high spectral resolution for spectromicroscopy studies. Two types of microscopes are common in X‐ray microscopy: the transmission X‐ray microscope and the scanning transmission X‐ray microscope; their set‐ups are explained in this paper. While the former takes high‐resolution images from an object with exposure times of seconds or faster, the latter is very well suited as an analytical instrument for spectromicroscopy. The morphology of clusters or particles from soil and sediment samples has been visualized using a transmission X‐ray microscope. Images are shown from a cryo‐tomography experiment based on X‐ray microscopy images to obtain information about the three‐dimensional structure of clusters of humic substances. The analysis of a stack of images taken with a scanning transmission X‐ray microscope to combine morphology and chemistry within a soil sample is shown. X‐ray fluorescence is a method ideally applicable to the study of elemental distributions and binding states of elements even on a trace level using X‐ray energies above 1 keV.  相似文献   

5.
In this paper the choice between bending magnets and insertion devices as sample illuminators for a hard X‐ray full‐field microscope is investigated. An optimized bending‐magnet beamline design is presented. Its imaging speed is very competitive with the performance of similar microscopes installed currently at insertion‐device beamlines. The fact that imaging X‐ray microscopes can accept a large phase space makes them very well suited to the output characteristics of bending magnets which are often a plentiful and paid‐for resource. There exist opportunities at all synchrotron light sources to take advantage of this finding to build bending‐magnet beamlines that are dedicated to transmission X‐ray microscope facilities. It is expected that demand for such facilities will increase as three‐dimensional tomography becomes routine and advanced techniques such as mosaic tomography and XANES tomography (taking three‐dimensional tomograms at different energies to highlight elemental and chemical differences) become more widespread.  相似文献   

6.
Clessidra (hour‐glass) X‐ray lenses have an overall shape of an old hour glass, in which two opposing larger triangular prisms are formed of smaller identical prisms or prism‐like objects. In these lenses, absorbing and otherwise optically inactive material was removed with a material‐removal strategy similar to that used by Fresnel in the lighthouse lens construction. It is verified that when the single prism rows are incoherently illuminated they can be operated as independent micro‐lenses with coinciding image positions for efficient X‐ray beam concentration. Experimental data for the line width and the refraction efficiency in one‐dimensional focusing are consistent with the expectations. Imperfections in the structures produced by state‐of‐the‐art deep X‐ray lithography directed only 35% of the incident intensity away from the image and widened it by just 10% to 125 µm. An array of micro‐lenses with easily feasible prism sizes is proposed as an efficient retrofit for the refocusing optics in an existing beamline, where it would provide seven‐fold flux enhancement.  相似文献   

7.
The optical design of a two‐dimensional imaging soft X‐ray spectrometer is described. A monochromator will produce a dispersed spectrum in a narrow vertical illuminated stripe (~2 µm wide by ~2 mm tall) on a sample. The spectrometer will use inelastically scattered X‐rays to image the extended field on the sample in the incident photon energy direction (vertical), resolving the incident photon energy. At the same time it will image and disperse the scattered photons in the orthogonal (horizontal) direction, resolving the scattered photon energy. The principal challenge is to design a system that images from the flat‐field illumination of the sample to the flat field of the detector and to achieve sufficiently high spectral resolution. This spectrometer provides a completely parallel resonant inelastic X‐ray scattering measurement at high spectral resolution (~30000) over the energy bandwidth (~5 eV) of a soft X‐ray absorption resonance.  相似文献   

8.
Transmission X‐ray mirrors have been fabricated from 300–400 nm‐thick low‐stress silicon nitride windows of size 0.6 mm × 85 mm. The windows act as a high‐pass energy filter at grazing incidence in an X‐ray beam for the beam transmitted through the window. The energy cut‐off can be selected by adjusting the incidence angle of the transmission mirror, because the energy cut‐off is a function of the angle of the window with respect to the beam. With the transmission mirror at the target angle of 0.22°, a 0.3 mm × 0.3 mm X‐ray beam was allowed to pass through the mirror with a cut‐off energy of 10 keV at the Cornell High Energy Synchrotron Source. The energy cut‐off can be adjusted from 8 to 12 keV at an angle of 0.26° to 0.18°, respectively. The observed mirror transmittance was above 80% for a 300 nm‐thick film.  相似文献   

9.
A method is presented to simplify Bragg coherent X‐ray diffraction imaging studies of complex heterogeneous crystalline materials with a two‐stage screening/imaging process that utilizes polychromatic and monochromatic coherent X‐rays and is compatible with in situ sample environments. Coherent white‐beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three‐dimensional reciprocal‐space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.  相似文献   

10.
The first microbeam synchrotron X‐ray fluorescence (µ‐SXRF) beamline using continuous synchrotron radiation from Siam Photon Source has been constructed and commissioned as of August 2011. Utilizing an X‐ray capillary half‐lens allows synchrotron radiation from a 1.4 T bending magnet of the 1.2 GeV electron storage ring to be focused from a few millimeters‐sized beam to a micrometer‐sized beam. This beamline was originally designed for deep X‐ray lithography (DXL) and was one of the first two operational beamlines at this facility. A modification has been carried out to the beamline in order to additionally enable µ‐SXRF and synchrotron X‐ray powder diffraction (SXPD). Modifications included the installation of a new chamber housing a Si(111) crystal to extract 8 keV synchrotron radiation from the white X‐ray beam (for SXPD), a fixed aperture and three gate valves. Two end‐stations incorporating optics and detectors for µ‐SXRF and SXPD have then been installed immediately upstream of the DXL station, with the three techniques sharing available beam time. The µ‐SXRF station utilizes a polycapillary half‐lens for X‐ray focusing. This optic focuses X‐ray white beam from 5 mm × 2 mm (H × V) at the entrance of the lens down to a diameter of 100 µm FWHM measured at a sample position 22 mm (lens focal point) downstream of the lens exit. The end‐station also incorporates an XYZ motorized sample holder with 25 mm travel per axis, a 5× ZEISS microscope objective with 5 mm × 5 mm field of view coupled to a CCD camera looking to the sample, and an AMPTEK single‐element Si (PIN) solid‐state detector for fluorescence detection. A graphic user interface data acquisition program using the LabVIEW platform has also been developed in‐house to generate a series of single‐column data which are compatible with available XRF data‐processing software. Finally, to test the performance of the µ‐SXRF beamline, an elemental surface profile has been obtained for a piece of ancient pottery from the Ban Chiang archaeological site, a UNESCO heritage site. It was found that the newly constructed µ‐SXRF technique was able to clearly distinguish the distribution of different elements on the specimen.  相似文献   

11.
A numerical method of reconstruction of an object image using an X‐ray dynamical diffraction Fraunhofer hologram is presented. Analytical approximation methods and numerical methods of iteration are discussed. An example of a reconstruction of an image of a cylindrical beryllium wire is considered. The results of analytical approximation and zero‐order iteration coincide with exact values of the amplitude complex transmission coefficient of the object as predicted by the resolution limit of the scheme, except near the edges of the object. Calculations of the first‐ and second‐order iterations improve the result at the edges of the object. This method can be applied for determination of the complex amplitude transmission coefficient of amplitude as well as phase objects. It can be used in X‐ray microscopy.  相似文献   

12.
The development of a sagittally focusing double‐multilayer monochromator is reported, which produces a spatially extended wide‐bandpass X‐ray beam from an intense synchrotron bending‐magnet source at the Advanced Photon Source, for ultrafast X‐ray radiography and tomography applications. This monochromator consists of two W/B4C multilayers with a 25 Å period coated on Si single‐crystal substrates. The second multilayer is mounted on a sagittally focusing bender, which can dynamically change the bending radius of the multilayer in order to condense and focus the beam to various points along the beamline. With this new apparatus, it becomes possible to adjust the X‐ray beam size to best match the area detector size and the object size to facilitate more efficient data collection using ultrafast X‐ray radiography and tomography.  相似文献   

13.
14.
The ability to probe morphology and phase distribution in complex systems at multiple length scales unravels the interplay of nano‐ and micrometer‐scale factors at the origin of macroscopic behavior. While different electron‐ and X‐ray‐based imaging techniques can be combined with spectroscopy at high resolutions, owing to experimental time limitations the resulting fields of view are too small to be representative of a composite sample. Here a new X‐ray imaging set‐up is proposed, combining full‐field transmission X‐ray microscopy (TXM) with X‐ray absorption near‐edge structure (XANES) spectroscopy to follow two‐dimensional and three‐dimensional morphological and chemical changes in large volumes at high resolution (tens of nanometers). TXM XANES imaging offers chemical speciation at the nanoscale in thick samples (>20 µm) with minimal preparation requirements. Further, its high throughput allows the analysis of large areas (up to millimeters) in minutes to a few hours. Proof of concept is provided using battery electrodes, although its versatility will lead to impact in a number of diverse research fields.  相似文献   

15.
Taking into account background correction and using Fourier analysis, a numerical method of an object image correction using an X‐ray dynamical diffraction Fraunhofer hologram is presented. An example of the image correction of a cylindrical beryllium wire is considered. A background correction of second‐order iteration leads to an almost precise reconstruction of the real part of the amplitude transmission coefficient and improves the imaginary part compared with that without a background correction. Using Fourier analysis of the reconstructed transmission coefficient, non‐physical oscillations can be avoided. This method can be applied for the determination of the complex amplitude transmission coefficient of amplitude as well as phase objects, and can be used in X‐ray microscopy.  相似文献   

16.
For the first time, the three‐dimensional (3D) ultrastructure of an intact rice pollen cell has been obtained using a full‐field transmission hard X‐ray microscope operated in Zernike phase contrast mode. After reconstruction and segmentation from a series of projection images, complete 3D structural information of a 35 µm rice pollen grain is presented at a resolution of ~100 nm. The reconstruction allows a clear differentiation of various subcellular structures within the rice pollen grain, including aperture, lipid body, mitochondrion, nucleus and vacuole. Furthermore, quantitative information was obtained about the distribution of cytoplasmic organelles and the volume percentage of each kind of organelle. These results demonstrate that transmission X‐ray microscopy can be quite powerful for non‐destructive investigation of 3D structures of whole eukaryotic cells.  相似文献   

17.
A video camera system for observing a sample from the direction of an incident soft X‐ray beam has been developed. The sample is seen via two reflecting mirrors. The first mirror, which has a hole to allow the soft X‐ray beam to pass through, is set on the beam axis in a vacuum. The second mirror is used to cancel out the mirror inversion of the image. This camera system is used for efficient positioning of samples in a soft X‐ray beam.  相似文献   

18.
X‐ray microscopy is a commonly used method especially in material science application, where the large penetration depth of X‐rays is necessary for three‐dimensional structural studies of thick specimens with high‐Z elements. In this paper it is shown that full‐field X‐ray microscopy at 6.2 keV can be utilized for imaging of biological specimens with high resolution. A full‐field Zernike phase‐contrast microscope based on diffractive optics is used to study lipid droplet formation in hepatoma cells. It is shown that the contrast of the images is comparable with that of electron microscopy, and even better contrast at tender X‐ray energies between 2.5 keV and 4 keV is expected.  相似文献   

19.
A novel X‐ray Bragg optics is proposed for variable‐magnification of an X‐ray beam. This X‐ray Bragg optics is composed of two magnifiers in a crossed arrangement, and the magnification factor, M, is controlled through the azimuth angle of each magnifier. The basic properties of the X‐ray optics such as the magnification factor, image transformation matrix and intrinsic acceptance angle are described based on the dynamical theory of X‐ray diffraction. The feasibility of the variable‐magnification X‐ray Bragg optics was verified at the vertical‐wiggler beamline BL‐14B of the Photon Factory. For X‐ray Bragg magnifiers, Si(220) crystals with an asymmetric angle of 14° were used. The magnification factor was calculated to be tunable between 0.1 and 10.0 at a wavelength of 0.112 nm. At various magnification factors (M≥ 1.0), X‐ray images of a nylon mesh were observed with an air‐cooled X‐ray CCD camera. Image deformation caused by the optics could be corrected by using a 2 × 2 transformation matrix and bilinear interpolation method. Not only absorption‐contrast but also edge‐contrast due to Fresnel diffraction was observed in the magnified images.  相似文献   

20.
Aiming at advancing storage‐ring‐based ultrafast X‐ray science, over the past few years many upgrades have been undertaken to continue improving beamline performance and photon flux at the Femtoslicing facility at BESSY II. In this article the particular design upgrade of one of the key optical components, the zone‐plate monochromator (ZPM) beamline, is reported. The beamline is devoted to optical pump/soft X‐ray probe applications with 100 fs (FWHM) X‐ray pulses in the soft X‐ray range at variable polarization. A novel approach consisting of an array of nine off‐axis reflection zone plates is used for a gapless coverage of the spectral range between 410 and 1333 eV at a designed resolution of EE = 500 and a pulse elongation of only 30 fs. With the upgrade of the ZPM the following was achieved: a smaller focus, an improved spectral resolution and bandwidth as well as excellent long‐term stability. The beamline will enable a new class of ultrafast applications with variable optical excitation wavelength and variable polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号