首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of two different proteins at a planar poly(acrylic acid) (PAA) brush was studied as a function of the ionic strength of the protein solutions applying total internal reflection fluorescence (TIRF) spectroscopy. Planar PAA brushes were prepared with a grafting density of 0.11 nm(-2) and were characterized using X-ray reflectometry. Hen egg-white lysozyme and bovine serum albumin (BSA) were used as model proteins, which have a net positive and negative charge at neutral pH-values, respectively. It has been found that both proteins adsorb strongly at a planar PAA brush at low ionic strength. Whereas lysozyme interacts with a PAA brush under electrostatic attraction at neutral pH-values, BSA binds under electrostatic repulsion at pH > 5. Even at pH = 8, significant amounts of BSA are adsorbed to a planar PAA brush. In addition, the reversibility of BSA adsorption has been characterized. Dilution of a BSA solution leads to an almost complete desorption of BSA from a PAA brush at short contact times. When the ionic strength of the protein solutions is increased to about 100-200 mM, a planar PAA brush appears largely protein-resistant, regardless of the protein net charge. The results of this study indicate that the salt-dependent protein affinity of a PAA brush represents a unique effect that must be explained by a novel protein-binding mechanism. On the basis of a recent model, it is suggested that a release of counterions is the most probable driving force for protein adsorption at a PAA brush. In a general view, this study characterizes a planar PAA brush as a new materials coating for the controlled immobilization of proteins whose use in biotechnological applications appears to be rewarding.  相似文献   

2.
We consider the adsorption of bovine serum albumin (BSA) on spherical polyelectrolyte brushes (SPB). The SPB consist of a solid polystyrene core of 100nm diameter onto which linear polyelectrolyte chains (poly(acrylic acid), (PAA)) are grafted. The adsorption of BSA is studied at a pH of 6.1 at different concentrations of added salt and buffer (MES). We observe strong adsorption of BSA onto the SPB despite the effect that the particles as well as the dissolved BSA are charged negatively. The adsorption of BSA is strongest at low salt concentration and decreases drastically with increasing amounts of added salt. The adsorbed protein can be washed out again by raising the ionic strength. The various driving forces for the adsorption are discussed. It is demonstrated that the main driving force is located in the electrostatic interaction of the protein with the brush layer of the particles. All data show that the SPB present a new class of carrier particles whose interaction with proteins can be tuned in a well-defined manner.  相似文献   

3.
We performed neutron reflectometry (NR) and total internal reflection fluorescence (TIRF) spectroscopy to characterize the structure and the protein binding capacity of a planar poly(acrylic acid) (PAA) brush at different temperatures. A PAA brush was prepared by spin-coating planar quartz or silicon wafers with a thin film of poly(styrene). Then, the diblock copolymer poly(styrene)-poly(acrylic acid) was deposited on these modified wafers using the Langmuir-Sch?fer or Langmuir-Blodgett technique. PAA grafting densities of about 0.1 chains per nm2 were obtained. The NR experiments indicate a remarkable swelling of the PAA brush in contact with a buffer solution, when it is heated to 40 degrees C for several hours. The swollen brush structure remains upon cooling back to 20 degrees C suggesting a disentanglement of the initially formed PAA brush by the temporary heating. At pD = 6.7, the protein bovine serum albumin (BSA) with a negative net charge is strongly adsorbed to the swollen PAA brush. From the scattering length density profiles obtained from the NR curves, an almost homogeneous filling of the whole PAA brush space with BSA molecules can be deduced corresponding to an average BSA volume fraction of about 7-10% and an adsorbed protein mass of about 1.4 mg m-2. By analyzing the TIRF experiments, it is found that BSA adsorption is enhanced when increasing the temperature which represents an evidence for an entropic driving force for protein adsorption. However, the mechanism of BSA adsorption at a PAA brush appears to be different at 20 and 40 degrees C.  相似文献   

4.
Recent experiments showed significant adsorption of bovine serum albumin (BSA) in spherical polyelectrolyte brushes (SPB) consisting of polyacrylic acid, even for pH values above the isoelectric point of the protein, when both protein and polyion are negatively charged. To describe these experimental findings theoretically, we have constructed a spherical box model for an annealed brush consisting of a weak polyelectrolyte that includes the adsorption of BSA. At equilibrium the chemical potential of BSA in solution equals that at each location in the brush, while the net force on the polyions (including osmotic, stretching, and excluded volume terms) is zero at each location. Protein adsorption is predicted above the isoelectric point and--in agreement with experimental data--is a strong function of ionic strength and pH. Adsorption of protein in the brush is possible because the pH in the brush is below the isoelectric point and protein reverses its charge from negative to positive when it adsorbs.  相似文献   

5.
High capacity, charge-selective protein uptake by polyelectrolyte brushes   总被引:2,自引:0,他引:2  
Surface plasmon resonance was used to measure binding of proteins from solution to poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes end-grafted from gold surfaces by atom transfer radical polymerization (ATRP). PDMAEMA brushes were prepared with a variety of grafting densities and degrees of polymerization. These brushes displayed charge selective protein uptake. The extent of uptake for net negatively charged bovine serum albumin (BSA) scaled linearly with the surface mass concentration of grafted PDMAEMA, regardless of grafting density. BSA was bound at a constant ratio of 120 DMAEMA monomer units per protein molecule for all brushes examined. The equivalent three-dimensional concentration of BSA bound in the brush (i.e., the bound BSA surface excess concentration divided by the brush thickness) decreased monotonically with decreasing grafting density. The concentration of BSA bound within brushes prepared at higher grafting densities was comparable with the aqueous protein solubility limit. BSA desorption from the brush required changes in solution pH and/or ionic strength to eliminate its net electrostatic attraction to PDMAEMA. Net positively charged lysozyme was completely rejected by the PDMAEMA brushes.  相似文献   

6.
Protein adsorption on charged inorganic solid materials has recently attracted enormous interest owing to its various possible applications, including drug delivery and biomaterial design. The need to combine experimental and computational approaches to get a detailed picture of the adsorbed protein properties is increasingly recognised and emphasised in this review. We discuss the methods frequently used to study protein adsorption and the information they can provide. We focus on model systems containing a silica surface, which is negatively charged and hydrophilic at physiological pH, and two contrasting proteins: bovine serum albumin (BSA) and lysozyme (LSZ) that are both water soluble. At pH 7, BSA has a net negative charge, whereas LSZ is positive. In addition, BSA is moderately sized and flexible, whereas LSZ is small and relatively rigid. These differences in charge and structural nature capture the role of electrostatics and hydrophobic interactions on the adsorption of these proteins, along with the impact of adsorption on protein orientation and function. Understanding these model systems will undoubtedly enhance the potential to extrapolate our knowledge to other systems of interest.  相似文献   

7.
We have studied the adsorption of alpha-lactalbumin at a planar poly(acrylic acid) (PAA) brush using neutron reflectometry (NR) and total internal reflection fluorescence (TIRF) spectroscopy. The PAA brush has been prepared by spin-coating silicon or quartz plates with a hydrophobic poly(styrene) film and by transferring the copolymer poly(styrene)-poly(acrylic acid) onto the modified surface. In the case of NR, the poly(styrene) film and the poly(styrene) chain ends of the copolymer were perdeuterated in order to generate a high contrast to the non-deuterated PAA brush. alpha-Lactalbumin was chosen as the model protein because it is a relatively small globular protein with a negative net charge at neutral pH-values, as chosen in the experiments. Thus, it is interacting with the PAA brush on the 'wrong' side of its isoelectric point. In addition, the effects of temperature on the volume fraction profile and the reorientational mobility of the protein within the PAA brush were determined. From the analysis of the NR data, it has been found that despite of its negative net charge, alpha-lactalbumin is penetrating into the PAA brush. Its volume fraction profile parallels that of the PAA brush, indicating an exclusive interaction between the protein and the PAA. No protein accumulation is found at the inner poly(styrene) or the outer solution interface of the PAA brush. When increasing the temperature from 20 to 40 degrees C, less protein is adsorbed, suggesting the presence of enthalpic interaction contributions. From the analysis of the TIRF data, a high degree of reorientational mobility of alpha-lactalbumin within a PAA brush can be inferred. The reorientational correlation time of alpha-lactalbumin labeled with the Alexa Fluor 488 dye was found to increase from 5.5 to 32 ns upon adsorption, which can well be explained by the higher viscosity inside the PAA brush. Overall, the results of this study quantify for the first time the molecular details of the unique interaction of a protein on the 'wrong' side of its isoelectric point with a planar charged brush interface. It is concluded that the high mobility of alpha-lactalbumin within a PAA brush can partially be understood by the presence of repulsive electrostatic interactions. There is no 'freezing' of the protein dynamics, which is a precondition for biological activity.  相似文献   

8.
Using Brownian dynamics simulations, we study the effect of the charge ratio, the surfactant length, and the grafting density on the conformational behavior of the complex formed by the polyelectrolyte brush with oppositely charged surfactants. In our simulations, the polyelectrolyte chains and surfactants are represented by a coarse-grained bead-spring model, and the solvent is treated implicitly. It is found that varying the charge ratio induces different morphologies of surfactant aggregates adsorbed onto the brush. At high charge ratios, the density profiles of surfactant monomers indicate that surfactant aggregates exhibit a layer-by-layer arrangement. The surfactant length has a strong effect on the adsorption behavior of surfactants. The lengthening of surfactant leads to a collapsed brush configuration, but a reswelling of the brush with further increasing the surfactant length is observed. The collapse of the brush is attributed to the enhancement of surfactants binding to polyelectrolyte chains. The reswelling is due to an increase in the volume of adsorbed surfactant aggregates. At the largest grafting density investigated, enhanced excluded volume interactions limit the adsorption of surfactant within the polyelectrolyte brush. We also find that end monomers in polyelectrolyte chains exhibit a bimodal distribution in cases of large surfactant lengths and high charge ratios.  相似文献   

9.
Exfoliated graphene particles stabilised by the cationic polyelectrolyte polyethyleneimine (PEI) were used in conjunction with an anionic polyelectrolyte, poly(acrylic acid), to construct multilayers using the layer-by-layer technique on a silica substrate. In the first adsorption step, the surface excess of the cationic graphene was dependent on the overall charge on the nanoparticle which in turn can be tuned through modifying solution pH as PEI has weakly ionisable charged amine groups. The adsorbed amount onto the silica surface increased as the solution pH increased. Subsequently, a layer of PAA was adsorbed on top of the cationic graphene through electrostatic interaction. The multilayer could be assembled through this alternate deposition, with the influence of solution conditions investigated. The pH of the adsorbing solutions was the chief determinant of the overall adsorbed amounts, with more mass added at the elevated pH of 9 in comparison with pH 4. Atomic force microscopy confirmed that the graphene particles were adsorbed to the silica interface and that the surface coverage of the disc-like nanoparticles was complete after the deposition of five graphene-polyelectrolyte bi-layers. Furthermore, the graphene nanoparticles themselves could be modified through the consecutive addition of the oppositely charged polymers. A multilayered assembly of negatively charged graphene sheets modified with a bi-layer of PEI and PAA was also deposited on a silica surface with adsorbed PEI.  相似文献   

10.
Binary brushes constituted from two incompatible polymers can be used in the form of ultrathin polymeric layers as a versatile tool for surface engineering to tune physicochemical surface characteristics such as wettability, surface charge, chemical composition, and morphology and furthermore to create responsive surface properties. Mixed brushes of oppositely charged weak polyelectrolytes represent a special case of responding surfaces that are sensitive to changes in the pH value of the aqueous environment and therefore represent interesting tools for biosurface engineering. The polyelectrolyte brushes used for this study were composed of two oppositely charged polyelelctrolytes poly(2-vinylpyridine) (P2VP) and poly(acrylic acid) (PAA). The in-situ properties and surface characteristics such as as surface charge, surface tension, and extent of swelling of these brush layers are functions of the pH value of the surrounding aqueous solution. To test the behavior of the mixed polylelctrolyte brushes in contact with biosystems, protein adsorption experiments with globular model proteins were performed at different pH values and salt concentrations (confinement of counterions) of the buffer solutions. The influence of the pH value, buffer salt concentration, and isoelectric points (IEP) of the brush and protein on the adsorbed amount and the interfacial tension during protein adsorption as well as the protein adsorption mechanism postulated in reference to recently developed theories of protein adsorption on polyelectrolyte brushes is discussed. In the salted regime, protein adsorption was found to be similar to the often-described adsorption at hydrophobic surfaces. However, in the osmotic regime the balance of electrostatic repulsion and a strong entropic driving force, "counterion release", was found to be the main influence on protein adsorption.  相似文献   

11.
Site-selective adsorption of protein molecules was found on sapphire surfaces that exhibit a phase separation into two domains: weakly charged hydrophobic domain and negatively charged hydrophilic one. Ferritin and bovine serum albumin molecules, which are negatively charged in a buffer solution, are adsorbed to the hydrophobic domains. Avidin molecules, which are positively charged, are adsorbed to the other domain. Fibrinogen molecules, which consist of both negative and positive modules, are adsorbed to the whole sapphire surface. Hemoglobin molecules, whose net charge is almost zero, are also adsorbed to the whole surfaces. These results indicate that electrostatic double layer interaction is the primary origin of the observed selectivity. Dependence of protein adsorption or desorption behaviors on the pH value can also be interpreted by the proposed model.  相似文献   

12.
We use Brownian dynamics (BD) simulations to investigate the formation and structural characteristics of the complex between a spherical polyelectrolyte brush (SPB) and oppositely charged surfactants. Increasing the amount of added surfactants leads to a collapsed conformation of the SPB and the number of adsorbed surfactants exhibits a linear dependence. Nevertheless, the surfactant uptake into the SPB does not increase with further addition of surfactants. It is found that the surfactant length has a strong influence on the SPB conformation and the adsorption properties of surfactant. Upon changing the surfactant length from 3 to 11, the SPB undergoes a swelling-deswelling-reswelling conformational transition. The brush deswelling is due to the increase in the surfactant uptake. The increasing size of adsorbed aggregates is a main reason for reswelling of the SPB. A non-linear relationship between the brush thickness and the grafting density is observed. Especially at intermediate grafting densities, increasing the number of grafted chains has a weak effect on the brush thickness. We also find that a completely collapsed brush conformation occurs at high surfactant/SPB charge ratios or large surfactant lengths, while the brush layer is in a partly collapsed or extended state at an intermediate charge ratio and surfactant length.  相似文献   

13.
We investigated the adsorption of bovine serum albumin (BSA) on colloidal Al2O3 particles in an aqueous environment. Changes in the zeta potential of the Al2O3 particles upon the adsorption of BSA were measured using an electro-acoustic technique. The mass of protein adsorbed was determined by using UV-vis spectroscopy. The change of the isoelectric point of the Al2O3 powder-protein suspension was found to be a function of adsorbed protein mass. It was shown that approximately one monolayer of BSA was needed to fully mask the surface and to compromise the charge of Al2O3. From titration experiments it follows that about 30-36% of the negatively charged groups of the protein form bonds with the protonated and charged Al2O3 surface. On the basis of our observations we introduced a new adsorption model for BSA on Al2O3 particles.  相似文献   

14.
The effect of adsorption of bovine serum albumin (BSA) on the membrane characteristics of liposomes at pH 7.4 was examined in terms of zeta potential, micropolarity, microfluidity and permeability of liposomal bilayer membranes, where negatively charged L-alpha-dipalmitoylphosphatidylglycerol (DPPG)/L-alpha-dipalmitoylphosphatidylcholine (DPPC), negatively charged dicetylphosphate (DCP)/DPPC and positively charged stearylamine (SA)/DPPC mixed liposomes were used. BSA with negative charges adsorbed on negatively charged DPPG/DPPC mixed liposomes but did not adsorb on negatively charged DCP/DPPC and positively charged SA/DPPC mixed liposomes. Furthermore, the adsorption amount of BSA on the mixed DPPG/DPPC liposomes increased with increasing the mole fraction of DPPG in spite of a possible electrostatic repulsion between BSA and DPPG. Thus, the adsorption of BSA on liposomes was likely to be related to the hydrophobic interaction between BSA and liposomes. The microfluidity of liposomal bilayer membranes near the bilayer center decreased by the adsorption of BSA, while the permeability of liposomal bilayer membranes increased by the adsorption of BSA on liposomes. These results are considered to be due to that the adsorption of BSA brings about a phase separation in liposomes and that a temporary gap is consequently formed in the liposomal bilayer membranes, thereby the permeability of liposomal bilayer membranes increases by the adsorption of BSA.  相似文献   

15.
A thermodynamic formalism is developed for incorporating the effects of charge regulation on the ion-exchange adsorption of proteins under mass-overloaded conditions as described by the steric mass-action (SMA) isotherm. To accomplish this, the pH titration behavior of a protein and the associated adsorption equilibrium of the various charged forms of a protein are incorporated into a model which also accounts for the steric hindrance of salt counterions caused by protein adsorption. For the case where the protein is dilute, the new model reduces to the protein adsorption model described recently by the authors which accounts for charge regulation. Similarly, the new model reduces to the steric mass-action isotherm developed by Brooks and Cramer which applies to mass-overloaded conditions for the case where charge regulation is ignored so that the protein has a fixed charge. Calculations using the new model were found to agree with experimental data for the adsorption of bovine serum albumin (BSA) on an anion-exchange column packing when using reasonable physical properties. The new model was also used to develop an improved theoretical criterion for determining the conditions required for an adsorbed species to displace a protein in displacement chromatography when the pH is near the protein pI.  相似文献   

16.
The adsorption of bovine serum albumin (BSA) labeled with fluorescein isothiocyanate (FITC) on polyelectrolyte-coated glass substrates was investigated using fluorescence microscopy. Glass substrates may inhibit adsorption of proteins due to electrostatic repulsion. However, when the substrate is modified with a thin film of positively charged polyelectrolytes, proteins can be adsorbed due to the attractive electrostatic interactions. In this study, poly(allylamine-hydrochloride) (PAH) molecules, which have positively charged amino groups at pH 7, were used to generate a positively charged layer on the glass substrate. A surfactant, sodium dodecyl sulphate (SDS), was used to alter the glass-protein interaction and subsequently modulate the coverage of adsorbed protein. We applied this technique to control the heterogeneously charged microscopic patterns of biomolecules created when the adsorption of protein is done in conjunction with colloidal lithography.  相似文献   

17.
This study presents the use of flow cytometry as a high-throughput quantifiable technique to study multicomponent adsorption interactions between proteins and surfaces. Flow cytometry offers the advantage of high-throughput analysis of multiple parameters on a very small sampling scale. This enables flow cytometry to distinguish between individual adsorbent particles and adsorbate components within a suspension. As a proof of concept study, the adsorption of three proteins--bovine serum albumin (BSA), bovine immunoglobulin gamma (IgG) and fibrinogen--onto five surface-modified organosilica microsphere surfaces was used as a model multicomponent system for analysis. By uniquely labeling each protein and solid support type with spectrally distinguishable fluorescent dyes, the adsorption process could be "multiplexed" allowing for simultaneous screening of multiple adsorbate (protein) and adsorbent (particle surface) interactions. Protein adsorption experiments quantified by flow cytometry were found to be comparable to single-component adsorption studies by solution depletion. Quantitative distribution of the simultaneous competitive adsorption of BSA and IgG indicated that, at concentrations below surface saturation, both proteins adsorbed onto the surface. However, at concentrations greater than surface saturation, BSA preferentially adsorbed. Multiplexed particle suspensions of optically encoded particles were modified to produce a positively and negatively charged surface, a grafted 3400 MW poly(ethylene glycol) layer, or a physisorbed BSA or IgG layer. It was observed that adsorption was rapid and irreversible on all of the surfaces, and preadsorbed protein layers were the most effective in preventing further protein adsorption.  相似文献   

18.
The two-gradient version of the Scheutjens-Fleer self-consistent field (SF-SCF) theory is employed to model the interaction between a molecular bottle brush with a polyelectrolyte backbone and neutral hydrophilic side chains and an oppositely charged surface. Our system mimics graft-copolymers with a cationic main chain (among which poly( L-lysine)- graft-poly(ethylene glycol) (PLL- g-PEG) or poly( L-lysine)- graft-polyoxazoline are well-known examples) interacting with negatively charged (metal oxide) solid surfaces. We aim to analyze the copolymer-surface interaction patterns as a function of the molecular architecture parameters. Two regimes are investigated: First, we compute the effective interaction potential versus the distance from the surface for individual bottle brush macromolecules. Here, depending on the grafting ratio and the degree of polymerization of the side chains, the interplay of electrostatic attractions of the main chain to the surface and the steric repulsion of the grafts results in different patterns in the interaction potential and, therefore, in qualitatively different adsorption behavior. In particular, we demonstrate that, at high side chain grafting density and short grafts, the molecular brushes are strongly adsorbed electrostatically onto negatively charged substrates, whereas, in the opposite case of low grafting ratio and high molecular weight of grafts, the steric repulsion of the side chains from the surface dominates the polymer-surface interaction. At intermediate grafting ratios, the adsorption/depletion scenario depends essentially on the ratio between the electrostatic screening length and the thickness of the molecular bottle brush. We further have analyzed the equilibrium adsorbed amount as a function of the macromolecular architecture. Our results are based on a detailed account of attractive and repulsive (including intermolecular in-plane) interactions, and suggest a nonmonotonic dependence of the adsorbed amount on the grafting ratio, in good agreement with the experimental studies for PLL- g-PEG adsorption onto Nb2O5 surfaces. The results of the theoretical modeling are discussed in the context of the optimization of the PLL-g-PEG molecular design parameters in order to create protein-resistant surfaces.  相似文献   

19.
In this work, a binary-mixed-brushes-coated (BBC) capillary with switchable protein adsorption/desorption properties was developed and applied for on-line preconcentration of proteins. Firstly, amine-terminated poly(2-methyl-2-oxazoline) (PMOXA-NH2) and thiolterminated poly(acrylic acid) (PAA-SH) were synthesized by using cationic ring-opening polymerization (CROP) and reversible addition fragmentation chain transfer (RAFT) polymerization, respectively. Then, the BBC capillary based on poly(2-methyl-2-oxazoline) (PMOXA) and poly(acrylic acid) (PAA) was prepared by sequentially grafting of PMOXA-NH2 and PAA-SH onto fused-silica capillary inner surface through poly(dopamine) (PDA) as an anchor. The obtained PMOXA/PAA coating formed on the capillary or capillary's raw material was characterized in terms of the thickness, surface chemical composition by using scanning electron microscope (SEM) and X-ray photoelectron spectrum (XPS). The switchable protein adsorption/desorption performance of the BBC capillary was investigated by using fluorescence microscope under di erent solutions with certain pH and ionic strength(I). The results showed that bovine serum albumin (BSA) could be adsorbed on BBC capillary at pH=5.0 (I=10-5 mol/L), and then the adsorbed BSA could be released at pH=9.0 (I=0.1 mol/L). This switchable protein adsorption/desorption property of coated capillary was then used to preconcentrate proteins on-line for increasing the detection sensitivity of BSA in capillary electrophoresis (CE). With this method, a sensitivity enhancement factor (SEF) more than 5000 for BSA detection was obtained.  相似文献   

20.
Janus magnetic nanoparticles (~20 nm) were prepared by grafting either polystyrene sodium sulfonate (PSSNa) or polydimethylamino ethylmethacrylate (PDMAEMA) to the exposed surfaces of negatively charged poly(acrylic acid) (PAA)-coated magnetite nanoparticles adsorbed onto positively charged silica beads. Individually dispersed Janus nanoparticles were obtained by repulsion from the beads on reversal of the silica surface charge when the solution pH was increased. Controlled aggregation of the Janus nanoparticles was observed at low pH values, with the formation of stable clusters of approximately 2-4 times the initial size of the particles. Cluster formation was reversed, and individually dispersed nanoparticles recovered, by restoring the pH to high values. At intermediate pH values, PSSNa Janus nanoparticles showed moderate clustering, while PDMAEMA Janus nanoparticles aggregated uncontrollably due to dipolar interactions. The size of the stable clusters could be controlled by increasing the molecular weight of the grafted polymer, or by decreasing the magnetic nanoparticle surface availability for grafting, both of which yielded larger cluster sizes. The addition of small amounts of PAA-coated magnetic nanoparticles to the Janus nanoparticle suspension resulted in a further increase in the final cluster size. Monte Carlo simulation results compared favorably with experimental observations and showed the formation of small, elongated clusters similar in structure to those observed in cryo-TEM images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号