首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
郭艳玲  李靖 《合成化学》1999,7(2):187-190
以甘油单三苯甲基醚为原料,分别与乙二醇,二甘醇和三甘醇的双对甲苯磺酸酯经三步反应,合成得到双羟甲基-12-冠-4,双羟甲基-15-冠-5,双羟甲基-18-冠-6,双羟甲基-21-冠-7和双羟甲基-24-冠-8等一系列新型醚化合物。  相似文献   

2.
Polymers that contain crown ether moieties at the side chain and are capable of forming rather tough film were synthesized by the polymer reaction of poly(vinyl alcohol) with formyl derivatives of aliphatic crown ethers such as 12-crown-4, 15-crown-5, and 18-crown-6. In the passive transport of alkali metal picrates across the poly(crown ether) membranes the permeation, particularly of alkali metals which tend to form intramolecular sandwich-type complexes with the crown ether rings, was retarded, compared with a poly(vinyl alcohol) membrane. The cation selectivities in the permeation of poly(crown ether) membranes differed significantly from those of poly(vinyl alcohol).  相似文献   

3.
本研究借鉴合成冠醚的Willianmson反应,通过缓慢滴加二氯乙醚合成了重要中间体乙氧基醚链接的苯并菲二聚体,且避免了2,3-二羟基四戊烷氧基苯并菲自身成环反应所导致单一冠醚苯并菲的生成.进一步以该中间体为原料,通过缩合反应,最终得到了冠醚桥接苯并菲二聚体,并用1H NMR,13C NMR和MALDI-TOF质谱对产物的结构和纯度进行了表征.  相似文献   

4.
《中国化学》2017,35(7):1050-1056
Crown ether usually plays the role of macrocyclic host in supramolecular chemistry, but here the crown ether is also utilized as the stoppers in rotaxanes. In this work, we designed and synthesized two [3]rotaxanes containing four crown ether components by using an approach of template‐directed clipping reaction, of which, two crown ether components were employed as the macrocyclic hosts to assemble the mechanically interlocked framework while another two crown ether units located on the two ends of ammonium template acting as the stoppering groups of rotaxanes. Their self‐assembling process was monitored by the 1H NMR and one of the single crystal structures of [3]rotaxane was obtained.  相似文献   

5.
Sodium dialkyl phosphite reacts with non-activated alkyl halide in the presence of crown ether to give dialkyl alkyl phosphonate in moderate yield. Little or no reaction takes place in the absence of crown ether under the same conditions. In all cases, crown ether was present in catalytic amts. indicating that it behaves as a phase transfer catalyst between solid and liquid phases. The influences of structures of crown ethers, alkyl halides, dialkyl phosphites and the nature of solvent on the P-alkylation of sodium dialkyl phosphite have been investigated.  相似文献   

6.
This paper presents the synthesis of new polysilane with pendant crown ether groups. The polymer was obtained through the addition reaction of 4-allylbenzo-15-crown-5 to poly[methyl(H)-co-methylphenylsilane] copolymer in anhydrous toluene solution using hexachloroplatinic acid as a catalyst. The allyl functionalization of the crown ether was achieved by the coupling of the crown ether bromide with allyl magnesium chloride. The availability of the crown ether sites in complexation reactions with Cu(II) cations was tested.The chemical structures of all products and intermediates were studied using spectral methods (IR, 1H-NMR, 13C-NMR, UV), gel permeation chromatography (GPC) and thermogravimetric analysis (TGA).  相似文献   

7.
Metalloporphyrins and crown ether groups were simultaneously supported on chloromethylated polystyrene resin to produce a series of polymer-supported catalysts. The synthesis of these catalysts has been studied. The influence of pH, concentrations of NaOCl and phase transfer catalysts on the epoxidation of styrene catalyzed by these catalysts has also been investigated. The experimental results show that manganese(III) porphyrin bound to chloromethylated polystyrene which bears crown ether groups is effective catalysts for the epoxidation of styrene by sodium hypochlorite. The introduction of crown ether groups increases the catalytic efficiency of supported metalloporphyrins. The kinetics of epoxidation catalyzed by supported manganese(III) porphyrins obeys Michaelis-Menten equation—the characteristic of enzyme-driven reaction.  相似文献   

8.
A series of structurally related dibenzo-15-crown-5, dibenzo-18-crown-6, and dibenzo-21-crown-7 compounds with oxymethylacetoxy side arms is synthesized by reaction of the corresponding crown ether alcohols with potassium hydride and bromoacetic acid. Multi-step synthetic routes to the crown ether alcohol precursors are reported.  相似文献   

9.
氮杂冠醚接枝壳聚糖的合成及其对金属离子的吸附性能   总被引:4,自引:0,他引:4  
本文利用壳聚糖C2位上活泼的氨基先与苯醛反应制备成保护氨基的Schiff碱壳聚糖,再将含环氧基的氮杂冠醚接枝到壳聚糖的C6位上,制得含Schiff碱的氮杂冠醚壳聚糖,随后使其在一定条件下脱去苯甲醛,合成了一种含氮杂冠醚功能基的新型壳聚糖衍生物,研究了其重金属离子Pb^2+,Cu^2+、Cr^3+、Cd^2+的静态吸附性能。结果表明,该吸附剂对重金属离子具有较强的吸附能力,在Ph^2+、Cu^2+、  相似文献   

10.
Pyrene- and anthracene-appended new crown ether derivatives have been synthesized by Schiff's base reaction, and cation complexation behavior was investigated by fluorescence spectroscopy measurements. Based on photo-induced electron transfer and intramolecular charge transfer mechanism, the host molecules emit stronger fluorescence in the presence of various cations Na(+), K(+), Rb(+), Cs(+) and NH(4)(+) since the complexation between guest cations and crown ether compounds inhibit partial electron transfer from the nitrogen atom to the chromophores and subsequently fluorescence is enhanced. The binding constants were estimated from the plots of the fraction of binding sites filled for crown ether compound as a function of free-ion concentration. Results show that 15-crown-5 derivatives exhibit higher binding ability with sodium cations while 18-crown-6 derivatives had higher affinity for potassium cations, which is consistent with the hole-size relationship of the crown ethers. Ammonium ion complexation caused largest fluorescence enhancement. It is understood that ammonium ion cannot only complex with crown ether, but also interact directly with the lone pair electrons of nitrogen atom in C=N bond so that electron transfer from the nitrogen atom to chromophores is further inhibited.  相似文献   

11.
A series of crown ether cyanine dyes including crown ether styryl cyanine dyes, crown ether merocyanine dyes and crown ether squarylium cyanine dyes (unsymmetric and symmetric) derived from key intermediate 2‐methyl‐5,6(15‐crown‐5)benzotellurazole ( 1 ) were prepared.  相似文献   

12.
Potassium-selective PVC membrane electrodes based on bis- and poly (crown ether)s containing benzo-15-crown-5 moiety as neutral carrier were prepared and selectivity coefficients for various monovalent ions were measured in order to elucidate the effect of complexing property of these crown ether derivatives on the electrode response. In the preference for potassium over sodium of the electrodes, these bis- and poly (crown ether)s were found to exceed the corresponding monocyclic crown ether considerably, which reflects the easy complexation of stable 2:1 complexes of crown ether ring and ion, derived from the cooperative effect of two adjacent crown ether rings.  相似文献   

13.
The turbidity oscillations of self-oscillating polymers in the Belousov-Zhabotinsky (BZ) reaction system depending on the crown ether receptors contained in the polymer network have been studied. The three monomers are copolymerized, namely, N-isopropylacrylamide, the metal catalyst monomer for the BZ reaction, and the crown ether receptor monomer, to prepare the self-oscillating polymers used in this study. The turbidity oscillations are characterized by monitoring the transmittance of the polymer solution in the BZ reaction system at a specific wavelength of 570 nm. The oscillations are varied by crown ether receptors used in the polymerization process, i.e., BCAm(6) or BCAm(5), for the selective recognition of specific cations between potassium and sodium ions in the solution. The selective recognition of the BCAm receptors in the polymer chain for the two ions has brought out a variation in the turbidity oscillations by a change in the hydrophilicity of the polymer chain. The oscillations of the polymer solution composed of the BCAm(5) receptor are more influenced by sodium ion, while the polymer solution of BCAm(6) receptor is affected by potassium ion. However, the oscillation patterns of the redox changes obtained by these solution systems look much alike despite the differences in the polymer chain by crown ether receptors and cations of bromate used for the BZ reaction.  相似文献   

14.
The C9‐position of quinine was modified by meta‐ or para‐substituted benzo‐18‐crown‐6, and immobilized on 3‐mercaptopropyl‐modified silica gel through the radical thiol‐ene addition reaction. These two chiral stationary phases were evaluated by chiral acids, amino acids, and chiral primary amines. The crown ether moiety on the quinine anion exchanger provided a ligand‐exchange site for primary amino groups, which played an important role in the retention and enantioselectivity for chiral compounds containing primary amine groups. These two stationary phases showed good selectivity for some amino acids. The complex interaction between crown ether and protonated primary amino group was investigated by the addition of inorganic salts such as LiCl, NH4Cl, NaCl, and KCl to the mobile phase. The resolution results showed that the simultaneous interactions between two function moieties (quinine and crown ether) and amino acids were important for the chiral separation.  相似文献   

15.
《Tetrahedron: Asymmetry》2006,17(18):2642-2648
The compound (18-crown-6)-2,3,11,12-tetracarboxylic acid is shown to be an effective chiral NMR solvating agent for determining the enantiomeric excess of chiral pyrrolidines. Enantiomeric discrimination is observed in both the 1H and 13C NMR spectra. The neutral amine is mixed with the crown ether in an NMR tube and a neutralization reaction between the two produces the corresponding ammonium and carboxylate ions. An association of these ions accounts for the chiral recognition. Pyrrolidines with one or two substituent groups α to the nitrogen atom are not inhibited from binding to the crown ether. Chiral discrimination was observed in the NMR spectra of pyrrolidines that have a stereogenic center α or β to the nitrogen atom. Dibasic substrates are likely converted to their diprotonated form in the presence of the crown ether, and both ammonium sites appear to associate with the crown ether moiety.  相似文献   

16.
Takeuchi T  Lim LW 《Analytical sciences》2011,27(10):1019-1023
Inorganic anions were separated on a reversed-phase stationary phase dynamically modified with crown ether as a selector in capillary ion chromatography. The eluent contained crown ether, acetonitrile and a salt. Free and cation-trapped crown ether molecules in the eluent were adsorbed on a hydrophobic stationary phase such as triacontyl-functionalized silica (C30). The eluent cations trapped on crown ether worked as the ion-exchange sites, where the eluent anions and the analyte anions were competing for electrostatic interaction. The sizes of crown ether and the salt cation affected the retention of analyte anions. The concentrations of acetonitrile and crown ether as well as the eluent anion also affected the retention of analyte anions. An aqueous solution containing 18-crown-6-ether, potassium salt and acetonitrile achieved larger retention for analyte anions. Effects of the eluent conditions on the retention of analyte anions were examined in detail.  相似文献   

17.
Catalytic asymmetric aldol reactions in aqueous media have been developed using Pr(OTf)(3) and chiral bis-pyridino-18-crown-6 1. In the asymmetric aldol reaction using rare earth metal triflates (RE(OTf)(3)) and 1, slight changes in the ionic diameters of the metal cations greatly affected the diastereo- and enantioselectivities of the products. The substituents (MeO, Br) at the 4-position of the pyridine rings of the crown ether did not significantly affect the selectivities in the asymmetric aldol reaction, although they affected the binding ability of the crown ether with RE cations and the catalytic activity of Pr(OTf)(3)-crown ether complexes. From X-ray structures of RE(NO(3))(3)-crown ether complexes, it was found that they had similar structures regardless of the RE cations and the crown ethers used. Accordingly, the binding ability of the crown ether with the RE cation and the catalytic activity of the complex are important for attaining high selectivity in the asymmetric aldol reaction. Various aromatic and alpha,beta-unsaturated aldehydes and silyl enol ethers derived from ketones and a thioester can be employed in the catalytic asymmetric aldol reactions using Pr(OTf)(3) and 1, to provide the aldol adducts in good to high yields and stereoselectivities. In the case using the silyl enol ether derived from the thioester, 2,6-di-tert-butylpyridine significantly improved the yields of the aldol adducts.  相似文献   

18.
Calorimetric titrations are used to study the interactions between the crown ether 18-crown-6 and several α,ω-diamino dihydrochlorides in aqueous solution. These complexes are formed by ion-dipole interactions between the positively charged nitrogen atoms and the oxygen donor atoms of the crown ether. Depending on the experimental conditions, the formation of 1:1 or 2:1 complexes (ligand:diamines) can be studied. The solvation of the ligand and the amines are responsible for the observed thermodynamic values. The number of water molecules released during the reaction were calculated from the determined reaction entropies. Formation of 1:1 complexes distorts the solvation shell around the molecules. As a result, the number of solvent molecules released during the formation of the 2:1 complexes is slightly smaller than the number released from formation of the 1:1 complex. No experimental evidence is observed for the formation of complexes between one crown ether and two protonated amino groups.  相似文献   

19.
The synthesis and characterization of new tetramethoxy resorcinarene bis-crown ethers BC4 and BC5 are described. The complexation properties of the compounds toward alkali metal cations were studied by 1H NMR spectroscopy and X-ray crystallography, which revealed that BC5 can accommodate two cations simultaneously inside the crown pockets formed by the crown ether bridges and the resorcinarene skeleton. [reaction: see text].  相似文献   

20.
Double‐armed crown ether aldehydes ( 1–3 ) were synthesized from the reaction of 2 equiv salicylaldehyde, 4‐hydroxy‐3‐methoxybenzaldehyde (vanillin), and 3‐hydroxy‐4‐methoxybenzaldehyde (iso‐vanillin) with 4′,5′‐bis(bromomethyl)benzo‐15‐crown‐5. New crown ethers imine compounds ( 4–9 ) were synthesized by the condensation of corresponding crown ether aldehydes ( 1–3 ) with 4‐amino‐1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3H‐pyrazole‐3‐one and 2‐furan‐2‐yl‐methylamine. Sodium complexes ( 1a–9a) of the crown compounds form crystalline 1:1 (Na+:ligand) stoichiometries and were also synthesized. The structures of the crown ether aldehydes ( 1–3 ), imine compounds ( 4–9 ), and complexes ( 1a–9a ) were confirmed on the basis of elemental analyses, IR, 1H and 13C NMR, and mass spectrometry. © 2013 Wiley Periodicals, Inc. Heteroatom Chem 24:100–109, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21070  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号