首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of nano SiO2 and TiO2 fillers on the thermal, mechanical and electrochemical properties of PVA:PVdF:LiCF3SO3 have been investigated by three optimized systems of SPE (80PVA:20PVdF:15LiCF3SO3), CPE-I (SPE:8SiO2) and CPE-II (SPE:4TiO2). From the TGA curve least weight loss has been observed for CPE-II indicating high thermal stability compared to other systems. Stress–strain curve of the prepared samples confirm the enhancement of tensile strength in CPE-II compared to CPE-I and SPE. Conductivity studies show that addition of TiO2 filler slightly enhances ionic conductivity 3.7×10−3 S cm−1 compared to filler free system at 303 K. Dielectric plots have been analyzed and CPE-II possesses higher dielectric constant compared to CPE-I and filler free system. Temperature dependence of modulus plots has been studied for highest conductivity possessing sample. Wider electrochemical stability has been obtained for nano-composite polymer electrolytes. The results conclude that the prepared CPE-II shows the best performance and it will be well suited for lithium ion batteries.  相似文献   

2.
A solid polymer electrolyte (SPE) composites consisting blend of poly(ethylene oxide) (PEO) and poly(ethylene glycol) (PEG) as the polymer host with LiCF3SO3 as a Li+ cation salt and TiO2 nanoparticle which acts as a filler were prepared using solution-casting technique. The SPE films were characterized by X-ray diffraction and Fourier transform infrared analysis to ensure complexation of the polymer composites. Frequency-dependent impedance spectroscopy observation was used to determine ionic conductivity and dielectric parameters. Ionic conductivity was found to vary with increasing salt and filler particle concentrations in the polymer blend complexes. The optimum ambient temperature conductivity achieved was 2.66?×?10?4?S?cm?1 for PEO (65 %), PEG (15 %), LiCF3SO3 (15 %), ethylene carbonate (5 %), and TiO2 (3 %) using weight percentage. The dielectric relaxation time obtained from a loss tangent plot is fairly consistent with the conductivity studies. Both Arrhenius and VTF behaviors of all the composites confirm that the conductivity mechanism of the solid polymer electrolyte is thermally activated.  相似文献   

3.
In this work, we investigate the electrical, structural, and thermal properties of composite polymer electrolytes (CPEs). Different mass fractions of antimony trioxide filler, Sb2O3, are added into poly(acrylic acid) (PAA)-based polymer electrolytes with N-lithiotrifluoromethane sulphonamide [LiN(SO2CF3)2] (LiTFSI) as doping salt. Characteristics such as alternating current (AC)–impedance spectroscopy, attenuated total reflectance–Fourier transform infrared (ATR-FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) are analyzed. The highest ionic conductivity of (2.15?±?0.01)?×?10?4 S cm?1 is achieved at room temperature with addition of 6 wt% of fillers. The ionic transportation is further proven in a transference number study under DC polarization, whereas ATR-FTIR is employed to explore the complexation between PAA, LiTFSI, and Sb2O3. TGA reveals the improved thermal stability of CPEs. The glass transition temperature (T g) is reduced upon addition of Sb2O3 as shown in DSC analysis.  相似文献   

4.
S. Ramesh  Lim Jing Yi 《Ionics》2009,15(6):725-730
Poly(vinylchloride) (PVC) is an insulator and acts as a host in polymer electrolyte systems where addition of inorganic salt lithium trifluoromethanesulfonate (LiCF3SO3) and dibutyl phthalate (DBP) converts the system to become conductor. The conductivity of polymer electrolytes is explained on the basis of ionic mobility. Thirty-five weight percent DBP plasticized polymer electrolyte has the highest conductivity value (3.30?×?10?9 S cm?1) at 303 K. Temperature dependence of the conductivity of polymer films obeys the Arrhenius rule. X-ray diffraction (XRD) proves that addition of DBP will increase the amorphous nature of the system and lead to enhancement in ionic conductivity. Complexation between high molecular weight PVC, LiCF3SO3, and DBP is confirmed by the shifting of peaks, decreasing of peaks intensity, and broadening of peaks in XRD. Thermogravimetric analysis reveals that addition of DBP to PVC–LiCF3SO3 system reduces the stability of the film. Subsequently, thermal stability decreases with the increase in DBP content in the polymer electrolytes.  相似文献   

5.
S. Ramesh  Liew Chiam Wen 《Ionics》2010,16(3):255-262
Composite polymer electrolyte systems composed of poly(methyl methacrylate) (PMMA) as the host polymer, lithium trifluoromethanesulphonate (also known as lithium triflate; LiCF3SO3) as dopant salt, and a variety of different concentrations of nano-sized fumed silica (SiO2) as inorganic filler were studied. The effect upon addition of SiO2 on the ionic conductivity of the composite polymer electrolytes was investigated, and it was proven that the ionic conductivity had been enhanced. In addition, the interfacial stability also showed improvement. Maximum conductivity was obtained upon addition of 2 wt.% SiO2. The complexation of PMMA and LiCF3SO3 was verified through Fourier transform infrared studies. The thermal stability of the polymer electrolytes was also found to improve after dispersion of inorganic filler. This was proven in the thermogravimetric studies.  相似文献   

6.
A sequence of novel plasticized polymer nanocomposite electrolyte systems based on polyethylene oxide (PEO) as polymer host, LiCF3SO3 as salt, and a variety of concentrations of nanochitosan as inert filler, succinonitrile as a solid non-ionic plasticizer has been prepared. The prepared membranes were subjected to X-ray diffraction, FT-IR, tensile strength, morphological studies, thermal analysis, AC ionic conductivity measurement, and interfacial analyses. The combined effect of succinonitrile and nanochitosan on the electrochemical properties of polymer electrolytes has been studied, and it was confirmed that the ionic conductivity is significantly increased. The maximum ionic conductivity of the plasticized nanocomposite polymer electrolytes are found to be in the range of 10?2.8?S/cm. Besides, the interfacial stability also shows a significant improvement. The tensile measurement and thermal analysis results illustrate that the electrolytes based on that polymer host possess good mechanical and thermal stabilities.  相似文献   

7.
The effects of ceramics fillers on the polymethylmethacrylate (PMMA)-based solid polymer electrolytes have been studied using ac impedance spectroscopy and infrared spectroscopy. The polymer film samples were prepared using solution cast technique, tetrahydrofuran (THF) used as a solvent, and ethylene carbonate (EC) has been used as plasticizer. Lithium triflate salt (LiCF3SO3) has been incorporated into the polymer electrolyte systems. Two types of ceramic fillers, i.e., SiO2 and Al2O3, were then implemented into the polymer electrolyte systems. The solutions were stirred for several hours before it is poured into petri dishes for drying under ambient air. After the film has formed, it was transferred into desiccator for further drying before the test. From the observation done by impedance spectroscopy, the room temperature conductivity for the highest conducting film from the (PMMA–EC–LiCF3SO3) system is 1.36 × 10−5 S cm−1. On addition of the SiO2 filler and Al2O3 filler, the conductivity are expected to increase in the order of ∼10−4 S cm−1. Infrared spectroscopy indicates complexation between the polymer and the plasticizer, the polymer and the salts, the plasticizer and the salts, and the polymer and the fillers. The interactions have been observed in the C=O band, C–O–C band, and the O–CH3 band. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, Dec. 7-9, 2006.  相似文献   

8.
W. L. Tan  M. Abu Bakar 《Ionics》2016,22(8):1319-1335
The various solid lithium salt-magnetite/epoxidized natural rubber (LiX-Fe3O4/ENR) composite polymer electrolytes (CPEs) were obtained via solvent casting method. The CPEs were characterized using SEM/X-mapping, TEM, FTIR, DSC, TG analysis, and impedance spectroscopy. The CPEs demonstrate similar thermal behavior as their respective LiX-ENR polymer electrolytes (PEs) where X?=?COOCF3 ?, I?, CF3SO3 ?, and ClO4 ?. The presence of Fe3O4 particles in the CPEs enhanced the conductivity where an improvement of 1–2 orders of magnitude in CPEs’ conductivity is observed as compared to the PE counterparts. The CPEs showed an ion transference number (t ion) of >0.92 suggesting that ionic conduction remain dominant. In these CPEs, the Fe3O4 particles facilitated the movement of charge carrier via space-charge creation at the particle/polymer interface as well as increasing the amorphocity of the ENR matrix. The LiX (where X?=?COOCF3 ?, I?, and CF3SO3 ?), however, gave no significant effect to the thermal stability of ENR in the CPE while LiClO4 destabilized the ENR in the CPE. In contrast, the LiBF4-Fe3O4/ENR was thermally less stable (<20 °C) as compared to the respective LiBF4-ENR PE. Nevertheless, the activation energy for the degradation (E d ) of ENR in the CPEs is higher than the Fe3O4/ENR composite.  相似文献   

9.
Solid polymer electrolytes based on potato starch (PS) and graphene oxide (GO) have been developed in this study. Blending GO with PS has improved the ionic conductivity and mechanical properties of the electrolytes. In this work, series of polymer blend consisting of PS and GO as co-host polymer were prepared using solution cast method. The most amorphous PS-GO blend was obtained using 80 wt% of PS and 20 wt% of GO as recorded by X-ray diffraction (XRD). Incorporation of 40 wt% lithium trifluoromethanesulfonate (LiCF3SO3) into the PS-GO blend increases the conductivity to (1.48 ± 0.35) × 10?5 S cm?1. Further enhancement of conductivity was made using 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]). The highest conductivity at room temperature is obtained for the electrolyte containing 30 wt% of [Bmim][Cl] with conductivity value of (4.8?0 ± 0.69) × 10?4 S cm?1. Analysis of the Fourier transform infrared spectroscopy (FTIR) spectra confirmed the interaction between LiCF3SO3, [Bmim][Cl], and PS-GO blend. The variation of the dielectric constant and modulus studies versus frequency indicates that system of PS-GO-LiCF3SO3-[Bmim][Cl] obeys non-Debye behavior.  相似文献   

10.
This work examines the effect of lithium trifluoromethanesulfonate (LiCF3SO3) and glycerol on the conductivity and dielectric properties of potato starch-chitosan blend-based electrolytes. The electrolytes are prepared via solution cast technique. From X-ray diffraction (XRD) analysis, the blend of 50 wt.% starch and 50 wt.% chitosan is found to be the most amorphous blend. Fourier transform infrared (FTIR) spectroscopy studies show the interaction between the electrolyte materials. The room temperature conductivity of pure starch-chitosan film is found to be (2.85 ± 1.31) × 10?10 S cm?1. The incorporation of 45 wt.% LiCF3SO3 increases the conductivity to (7.65 ± 2.27) × 10?5 S cm?1. Further conductivity enhancement up to (1.32 ± 0.35) × 10?3 S cm?1 has been observed on addition of 30 wt.% glycerol. This trend in conductivity is verified by XRD and dielectric analysis. The temperature dependence of conductivity of all electrolytes are Arrhenian.  相似文献   

11.
Preliminary results on the mechanical, optical and electrical properties of composite gel electrolytes (CGEs) with fumed silica (SiO2) as a filler added to gel polymeric electrolyte (GPE) based on PMMA, LiCF3SO3 and PC are presented in this paper. Added fumed silica is seen to enhance the mechanical properties of the GPE without changing the conductivity significantly. The high ionic conductivity (×10−3 S/cm), high transmission in the visible region and nominal variance of conductivity and viscosity over a wide temperature window show that these CGEs are potential electrolytes for electrochromic windows (ECWs).  相似文献   

12.
Lithium salt, LiX (where X = BF 4 ? , I?, CF3SO 3 ? , COOCF 3 ? or ClO 4 ? ), was incorporated into epoxidized natural rubber (ENR). Thin films of LiX-ENR polymer electrolytes (PEs) were obtained via solvent casting method. These electrolytes were characterized using SEM/X-mapping, FTIR, differential scanning calorimeter, thermogravimetry analysis, and impedance spectroscopy. The trend in thermal stability and ionic conductivity of LiX-ENR PEs follow LiBF4 > > LiCF3SO3 ~ LiCOOCF3 > LiI > > LiClO4. The LiClO4 hardly dissociates and formed LiClO4 aggregates within the polymer matrix that resulted in a PE with low thermal stability and low ionic conductivity. The LiCF3SO3, LiCOOCF3, and LiI, however, exert moderate interactions with the ENR, and their respective PEs exhibit moderate ionic conductivity and thermal property. The occurrence of epoxide ring opening and complexation or cross-linking reactions in and between the ENR chains that involve BF 4 ? ions have produced a LiBF4-ENR PE with superior thermal property and ionic conductivity as compared to other PEs studied in this work.  相似文献   

13.
《Composite Interfaces》2013,20(4-6):347-358
Nanocomposite solid polymer electrolytes (NSPEs) based on poly(vinylidene fluoride) (PVDF) were prepared by dispersing two kinds of organoclay (Cloisite® 30B, Cloisite® 15A) consisting of silicate layers in the polymer matrix. The effect of affinity between PVDF and organoclay as the filler on ionic conductivity was investigated in relation to its content, dispersed condition of organoclay, and structural changes of nanocomposites. The characterizations of PVDF-based nanocomposites with various organoclay contents were carried out by XRD, TEM, DSC, and DMA. In order to confirm the ion conduction properties of NSPEs with LiCF3SO3 at room temperature, ac impedance analyzer and FT-IR spectrometer were used. As a result, a higher ionic conductivity appeared in the case of NSPE with C15A than that with C30B and the maximum conductivity was 1.04 × 10–3 S/cm for the NSPE containing 5 wt% of C15A and 40 wt% of LiCF3SO3.  相似文献   

14.
Nanocomposite polymer electrolyte consisting of polyvinyl alcohol (PVA) and lithium acetate with TiO2 filler has been synthesised by combination of solution cast technique and sol–gel process. The composite electrolyte films were characterised by different experimental techniques. The average particle size of composite electrolytes lies between 25 and 30?nm. System is essentially ionic with maximum conductivity of polymer electrolyte 90[80PVA–20LiAc]:10TiO2 (~4.5?×?10?6?S?cm?1) at room temperature.  相似文献   

15.
A solid polymer electrolyte (SPE) is synthesized by solution casting technique. The SPE uses poly(ethylene oxide) PEO as a host matrix doped with lithium triflate (LiCF3SO3), ethylene carbonate (EC) as plasticizer and nano alumina (Al2O3) as filler. The polymer electrolytes are characterized by Impedance Spectroscopy (IS) to determine the composition of the additive which gives the highest conductivity for each system. At room temperature, the highest conductivity is obtained for the composition PEO-LiCF3SO3-EC-15%Al2O3 with a value of 5.07 10− 4 S/cm. The ionic conductivity of the polymer electrolytes increases with temperature and obeys the Arrhenius law. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) studies indicate that the conductivity increase is due to an increase in amorphous content which enhances the segmental flexibility of polymeric chains and the disordered structure of the electrolyte. Fourier transform infrared spectroscopy (FTIR) spectra show the occurrence of complexation and interaction among the components. Scanning electron microscopy (SEM) images show the changes morphology of solid polymer electrolyte.  相似文献   

16.
In this paper, Al2TiO5 ceramic material has been synthesised and used as filler in polymer electrolyte system to enhance the conductivity. The precursor sintered at 1,050 °C and contained 0.08 mole of aluminium nitrate gives the best and complete formation of Al2TiO5. Composite polymer electrolytes of chitosan–NH4SCN containing different amount of home-made Al2TiO5 were prepared by solution casting. The addition of filler has enhanced the conductivity of polymer electrolyte. The sample 57 wt% chitosan–38 wt% NH4SCN–5 wt% Al2TiO5 exhibited the highest electrical conductivity of 2.10?×?10?4 S cm?1 at room temperature. The presence of the Al2TiO5 creates favourable pathways for ionic conduction through Lewis acid–base type interactions between ionic species and O/OH surface groups on alumina filler grains. In addition, the space charge region created by the presence of Al3+ could attract SCN?1 ions, thus immobilise it and increase the transport number of the cation. Degree of crystallinity is calculated from the deconvoluted X-ray diffraction patterns and it shows that the lowest degree of crystallinity is achieved when 5 wt% of filler is added. In Fourier transform infrared study, the carboxamide band of the polymer is observed to shift to higher wave number from 1,629 to 1,634 cm?1, confirming the formation of chitosan–NH4SCN–Al2TiO5 complexes. The morphology of composite polymer electrolyte has been studied using scanning electron microscopy at room temperature.  相似文献   

17.
Three types of inorganic electrolytes [Li10GeP2S12 (LGPS), 75Li2S·24P2S5·1P2O5 (LPOS), Li1.5Al0.5Ge1.5(PO4)3 (LAGP)] with different particle sizes and electrochemical properties are selected as active fillers incorporated into poly(ethylene oxide) (PEO) matrix to fabricate hybrid solid electrolytes. The optimum composition of each filler is found in consideration of ionic conductivity. Their electrochemical characteristics are investigated. The optimal conductivities are 1.60 × 10?5, 1.18 × 10?5, and 2.12 × 10?5 S cm?1 at room temperature for PEO-1%LGPS, PEO-1%LPOS, and PEO-20%LAGP, respectively. The electrochemical stability windows of these hybrid solid electrolytes are all above 5 V (vs. Li+/Li). The results show that these fillers have positive effects on the ionic conductivity, lithium ion transference number, and electrochemical stability. The relationship between the type of filler and electrochemical properties has been investigated. All-solid-state cells LiFePO4/Li are fabricated and present fascinating electrochemical performance with high capacity retention and good cycling stability. This work provides promising electrolytes prepared by a simple method.  相似文献   

18.
Hema  M.  Tamilselvi  P.  Hirankumar  G. 《Ionics》2017,23(10):2707-2714

In recent years, solid polymer electrolytes have been extensively studied due to its flexibility, electrochemical stability, safety, and long life for its applications in various electrochemical devices. Interaction of LiCF3SO3 and TiO2 nanofiller in the optimized composition of PVA:PVdF (80:20—system-A possessing σ ~ 2.8 × 10−7 Scm−1 at 303 K) blend polymer electrolyte have been analyzed in the present study. LiCF3SO3 has been doped in system-A, and the optimized LiCF3SO3 doped sample (80:20:15-system-B possessing σ ~ 2.7 × 10−3 Scm−1 at 303 K) has been identified. The effect of different concentration of TiO2 in system-B has been analyzed and the optimized system is considered as system-C (σ ~ 3.7 × 10−3 Scm−1 at 303 K). The cost effective, solution casting technique has been used for the preparation of the above polymer electrolytes. Vibrational, structural, mechanical, conductivity, thermal, and electrochemical properties have been studied using FTIR, XRD, stress-strain, AC impedance spectroscopic technique, DSC and TGA, LSV, and CV respectively to find out the optimized system. System-C possessing the highest ionic conductivity, higher tensile strength, low crystallinity, high thermal stability, and high electrochemical stability (greater than 5 V vs Li/Li+) is well suitable for lithium ion battery application.

  相似文献   

19.
《Current Applied Physics》2015,15(2):135-143
Solid polymer electrolytes consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend (50:50 wt/wt%) with lithium triflate (LiCF3SO3) as a dopant ionic salt at stoichiometric ratio [EO + (CO)]:Li+ = 9:1, poly(ethylene glycol) (PEG) as plasticizer (10 wt%) and montmorillonite (MMT) clay as nanofiller (3 wt%) have been prepared by solution cast followed by melt–pressing method. The X–ray diffraction study infers that the (PEO–PMMA)–LiCF3SO3 electrolyte is predominantly amorphous, but (PEO–PMMA)–LiCF3SO3–10 wt% PEG electrolyte has some PEO crystalline cluster, whereas (PEO–PMMA)–LiCF3SO3–10 wt% PEG–3 wt% MMT electrolyte is an amorphous with intercalated and exfoliated MMT structures. The complex dielectric function, ac electrical conductivity, electric modulus and impedance spectra of these electrolytes have been investigated over the frequency range 20 Hz to 1 MHz. These spectra have been analysed in terms of the contribution of electrode polarization phenomenon in the low frequency region and the dynamics of cations coordinated polymer chain segments in the high frequency region, and also their variation on the addition of PEG and MMT in the electrolytes. The temperature dependent dc ionic conductivity, dielectric relaxation time and dielectric strength of the plasticized nanocomposite electrolyte obey the Arrhenius behaviour. The mechanism of ions transportation and the dependence of ionic conductivity on the segmental motion of polymer chain, dielectric strength, and amorphicity of these electrolytes have been explored. The room temperature ionic conductivity values of the electrolytes are found ∼10−5 S cm−1, confirming their use in preparation of all-solid-state ion conducting devices.  相似文献   

20.
Preliminary results on composite gel electrolytes (CGEs) with fumed silica (SiO2) as filler added to gel polymeric electrolyte (GPE) based on PMMA, LiCF3SO3 and PC are presented in this paper. Added fumed silica is seen to enhance the mechanical properties of the GPE without changing the σ significantly. The high ionic conductivity (×10−3 S/cm), high transmission in the visible region and nominal variance of σ and ν over a wide temperature window makes these CGEs potential electrolytes for electrochromic windows (ECWs). Paper presented at the 2nd International Conference on Ionic Devices, Anna University, Chennai, India, Nov. 28–30, 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号