首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ling Zhao  Enshan Han  Lingzhi Zhu  Yanpu Li 《Ionics》2014,20(8):1193-1200
Cathode material LiMn1.95Co0.05O4 for lithium ion battery was synthesized via solid state reaction, and calcination temperature and time were investigated, respectively. Thermogravimetry (TG) and differential thermal analysis (DTA) measurements were utilized to determine the calcination temperature of precursor sample. The optimized calcination temperature and time are 850 °C and 15 h. The surface of LiMn1.95Co0.05O4 cathode is coated using Al2O3 coating materials. The phase structures, surface morphologies, and element types of the prepared LiMn1.95Co0.05O4 and Al2O3-coated LiMn1.95 Co0.05O4 were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy spectrum analysis (EDS). The 0.5 wt% Al2O3-coated compound exhibited better specific capacity and capacity retention than bare sample. The initial discharge capacity was 140.9 mAh/g and capacity retention was 96.7 % after 10 cycles at 0.1 C. Such enhancements are attributed to the presence of a stable Al2O3 layer which acts as the interfacial stabilizer on the surface of LiMn1.95Co0.05O4.  相似文献   

2.
LiMn2O4/graphite batteries using AlF3-coated LiMn2O4 have been fabricated and their electrochemical performance including discharge capacity and cyclic and storage performances have been tested and compared with pristine LiMn2O4/graphite batteries. The LiMn2O4/graphite battery with AlF3-coated LiMn2O4 shows better capacity (108.5 mAhg?1), cyclic performance (capacity retention of 92.7 % after 70 cycles), and capacity recovery ratio (98.6 %) than the pristine LiMn2O4 battery. X-ray diffraction patterns shows that the spinel structure of AlF3-coated LiMn2O4 can be controlled better than that of pristine LiMn2O4 after storage. The improvement in electrochemical performance of the AlF3-coated LiMn2O4/graphite battery is due to the fact that AlF3 acts as a stabilizer and can protect the oxide structure from damaging during storage, leading to a smaller resistance and polarization after storage.  相似文献   

3.
ZnO-coated LiMn2O4 cathode materials were prepared by a combustion method using glucose as fuel. The phase structures, size of particles, morphology, and electrochemical performance of pristine and ZnO-coated LiMn2O4 powders are studied in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), galvanostatic charge-discharge test, and X-ray photoelectron spectroscopy (XPS). XRD patterns indicated that surface-modified ZnO have no obvious effect on the bulk structure of the LiMn2O4. TEM and XPS proved ZnO formation on the surface of the LiMn2O4 particles. Galvanostatic charge/discharge test and rate performance showed that the ZnO coating could improve the capacity and cycling performance of LiMn2O4. The 2 wt% ZnO-coated LiMn2O4 sample exhibited an initial discharge capacity of 112.8 mAh g?1 with a capacity retention of 84.1 % after 500 cycles at 0.5 C. Besides, a good rate capability at different current densities from 0.5 to 5.0 C can be acquired. CV and EIS measurements showed that the ZnO coating effectively reduced the impacts of polarization and charge transfer resistance upon cycling.  相似文献   

4.
Spinel LiMn2O4 suffers from severe dissolution when used as a cathode material in rechargeable Li-ion batteries. To enhance the cycling stability of LiMn2O4, we use the atomic layer deposition (ALD) method to deposit ultrathin and highly conformal Al2O3 coatings (as thin as 0.6–1.2 nm) onto LiMn2O4 cathodes with precise thickness control at atomic scale. Both bare and ALD-coated cathodes are cycled at a specific current of 300 mA g?1 (2.5 C) in a potential range of 3.4–4.5 V (vs. Li/Li+). All ALD-coated cathodes exhibit significantly improved cycleability compared to bare cathodes. Particularly, the cathode coated with six Al2O3 ALD layers (0.9 nm thick) shows the best cycling performance, delivering an initial capacity of 101.5 mA h?g?1 and a final capacity of 96.5 mA h?g?1 after 100 cycles, while bare cathode delivers an initial capacity of 100.6 mA h?g?1 and a final capacity of only 78.6 mA h?g?1. Such enhanced electrochemical performances of ALD-coated cathodes are ascribed to the high-quality ALD oxide coatings that are highly conformal, dense, and complete, and thus protect active material from severe dissolution into electrolytes. Besides, cycling performances of coated cathodes can be easily optimized by accurately tuning coating thickness via varying ALD growth cycles.  相似文献   

5.
Ronghua Li  Min Li 《Ionics》2009,15(2):215-219
LiMn2O4 spinel cathode was synthesized by the sol–gel method by using glycolic acid as a chelating agent. The sample exhibited a pure cubic spinel structure without any impurities in the X-ray diffraction (XRD) patterns. The result of the electrochemical performances on the sample compared to those of electrodes based on LiMn2O4 spinel synthesized by solid state. LiMn2O4 synthesized by glycolic acid-assisted sol–gel method improves the cycling stability of electrode. The capacity retention of sol–gel-synthesized LiMn2O4 was about 90• after 100 cycles between 3.0 and 4.4 V at room temperature. The electrochemical performance of the LiMn2O4 (sol–gel) and LiMn2O4 (solid state) were investigated under 40• between 3.0 and 4.4 V. XRD results of the cathode material after 50 cycles at 40• revealed that LiMn2O4 (sol–gel) could effectively suppress the LiMn2O4 dissolving of into electrolyte and resulted in a better stability.  相似文献   

6.
Among several materials (transition metal oxide) under development for use as a cathode in lithium-ion batteries, cubic spinel LiMn2O4 is one of the most promising cathode materials. In this study, the sea urchin-like LiMn2O4 hollow macrospheres were synthesized by using sea urchin-like α-MnO2 precursors through solid-state in situ self-sacrificing conversion route. The as-prepared LiMn2O4 was assembled by many single-crystalline “thorns” of ca.10–20 nm in diameter and ca. 400–500 nm in length. Galvanostatic battery testing showed that sea urchin-like LiMn2O4 had an initial discharge capacity of 126.8 mAh/g at the rate of 0.2 C in the potential range between 3.0 and 4.5 V. More than 96.67 % of the initial discharge capacity was maintained for over 50 cycles. The improved electrochemical properties were attributed to the reduced particle size and enhanced electrical contacts by the materials. This particular sea urchin-like structured composite conceptually provides a new strategy for designing electrodes in energy storage applications.  相似文献   

7.
In order to investigate the effect of different electrolytes of LiPF6-based and LiPF6-based with the mixed additives of ethanolamine and heptamethyldisilazane on the storage performance of LiMn2O4, the commercial LiMn2O4 are added into these different electrolytes for storing deliberately at 60 °C in air for 4 h. The results show that the electrolyte with additives can prevent LiMn2O4 from being eroded by HF to a certain extent, and improve the storage performance of the material. The initial discharge capacities are 97.7 and 88.4 mAh g?1 at 0.1 and 1?C, respectively, which are much higher than that 84.4 and 63.6 mAh?g?1 of LiMn2O4 stored in the electrolyte without additives. Moreover, the former LiMn2O4 retains 89.1 % of its initial discharge capacity at 1?C after 150 cycles, while this is not up to 84 % for the latter.  相似文献   

8.
In order to overcome the severe capacity decay of LiMn2O4 at high temperature, TiN is used as an active materials additive in this paper. The XRD and XPS test results indicate that the TiN can effectively prevent Mn from dissolving in electrolyte; galvanostatic charge-discharge test shows that LiMn2O4 electrode with TiN exhibits remarkably improved capacity retention at high temperature with capacity of 105.1 mAh g?1 at 1 C in the first cycle at 55 °C and the capacity maintains 88.9% retention after 150 cycles. And the electrochemical impedance spectroscopy result demonstrates TiN’s effectiveness in easing the increase of charge-transfer resistance during cycling. Therefore, we can conclude that TiN, as an addictive, made obvious contribution to the greatly improved electrochemical cycling performance of LiMn2O4.  相似文献   

9.
The effect of heptamethyldisilazane as an electrolyte stabilizer on the cycling performance of a LiMn2O4/Li cell at different rates at 30 °C and the storage performance at 60 °C is investigated systematically based on conductivity test, linear sweep voltage, electrochemical impedance spectroscopy, scanning electron microscopy, X-ray diffraction, and charge–discharge measurements. The results show that heptamethyldisilazane added into the LiPF6-based electrolyte can increase the stability of the original electrolyte; coulomb efficiency, the initial discharge capacity, and cycling performance at different rates in a sense, meanwhile, improve the storage performance at elevated temperature, although the C-rate performance of the cell is a little worse than that without heptamethyldisilazane in the electrolyte. When the LiMn2O4/Li cell with heptamethyldisilazane in the LiPF6-based electrolyte stored at 60 °C for a week cycles 300 times, the capacity retention is up to 91.18 %, which is much higher than that (87.18 %) without the additive in the electrolyte. This is mainly due to the lower solid electrolyte interface resistance (R f) in the cell, followed by the better morphology and structure of the cathode after storage at 60 °C for a week compared with the LiMn2O4/Li cell without heptamethyldisilazane.  相似文献   

10.
S. B. Tang  M. O. Lai 《哲学杂志》2013,93(22):3249-3258
LiMn2O4 thin films were grown on stainless steel substrates at 625°C and 100?mTorr of oxygen by pulsed laser deposition. The deposited film was highly crystallized with an average crystal size of about 260?nm. The initial discharge capacity of the film was about 53.8?µAh?cm?2?µm?1 and the capacity decayed at an average rate of about 0.29% per cycle when the film was cycled between 3.0 and 4.5?V vs. Li/Li+, with a current density of 20?µA?cm?2. It was observed that the grains became smaller and the boundaries of grains became obscure after 100 cycles, indicating that manganese dissolution via loss of MnO may be the main factor leading to the capacity fade in pure thin film LiMn2O4 electrodes. The apparent diffusion coefficient of Li ions, obtained from cyclic voltammetry scans, was of the order of 10?12?cm2?s?1. High charge-transfer resistance was observed at high potentials. Ex-situ X-ray diffraction (XRD) and Raman spectroscopy were used to investigate the structure changes of LiMn2O4 thin film with intercalation/de-intercalation of lithium. XRD results revealed a relatively small lattice change with the removal of lithium in crystallized thin film, compared to that of powder LiMn2O4 cathode.  相似文献   

11.
A series of Cr-substituted LiMn2O4 samples (LiCr x Mn2-x O4, 0?≤?x?≤?0.3) were synthesized by a urea-assisted combustion method to enhance pseudocapacitive properties of LiMn2O4 material in aqueous electrolyte. Their structure and morphology were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The LiCr x Mn2-x O4 and activated carbon (AC) electrode were used as the cathode and anode in hybrid supercapacitors, respectively, which capacitive properties were determined by cyclic voltammetry (CV), galvanostatic charge/discharge test, and electrochemical impedance spectroscopy (EIS) in Li2SO4 solution. The results revealed that the partial substitution of Mn3+ by Cr3+ decreased initial capacity, but it prevented capacity fading. In the working voltage of 0–1.4 V, the AC/LiCr0.1Mn1.9O4 capacitor delivered an initial specific capacitance of 41.6 F g?1 (based on the total active mass of two electrodes) at a current density of 100 mA g?1 in 1 M Li2SO4 solution. After 1,000 cycles, its capacity loss was only 1.7 %.  相似文献   

12.
A novel facile approach to coat LiMn2O4 by lithium polyacrylate (PAALi) is demonstrated. The PAALi-coated LiMn2O4 (LMO@2%PAALi) and LiMn2O4 (LMO) are characterized by charge–discharge tests, X-ray diffraction (XRD), PAALi dissolving experiment, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), and inductively coupled plasma optical emission spectrometer (ICP-OES). XRD and FTIR analyses indicate that there are no clear differences between LMO@2%PAALi and LMO. PAALi dissolving experiment indicates that PAALi is indissolvable in LiPF6-EC/DMC/EMC electrolyte. TEM results reveal that LiMn2O4 particles are coated by PAALi. ICP-OES results indicate that this stable PAALi coating can prevent the Mn ions dissolving from active LiMn2O4 materials and then the stability of LiMn2O4 crystals in electrolyte are greatly enhanced. These unique features ensure that LMO@2%PAALi possesses much better rate performance, higher discharge capacity, better cycling performance, and lower charge transfer resistance over LMO. The discharge capacity of LMO@2%PAALi at 0.2 C reaches up to 127.2 mAh g?1 at room temperature.  相似文献   

13.
Thin films of spinel LiMn2O4 have been fabricated using a metallorganic precursor. Crystalline films have been deposited on Au substrates to exhibit as the cathode in rechargeable thin film lithium batteries. The nucleation and growth of spinel LiMn2O4 crystallites were investigated with heat treatment of the deposited thin films. Film capacity density as high as 22 μAh/cm2 was measured for LiMn2O4. The film heat treated at 700 °C were cycled electrochemically up to 30 cycles against Li metal without any degradation of the capacity. There were neither open area nor amorphous layers which prevent the Li+ions transfer at the boundaries in the LiMn2O4 thin film. The microscopic study revealed that (111) planes in the two grains directly bonded at the grain boundary which could proceed the lithium ion intercalation or deintercalation smoothly.  相似文献   

14.
A moderate-temperature method of preparation of the spinel LiMn2O4 was developed around 500 °C. Physical features of the products were identified by X-ray photoelectron spectroscopy, X-ray diffractometry, Raman scattering and FTIR spectroscopy. The electronic conductivity of LiMn2O4 has been studied as a function of annealing temperature. The product LiMn2O4 is identified as a micron-sized powder and analysis of the local environment is in good accordance with the classical structural model of Fd3m space group. LiMn2O4 exhibits an electrical conductivity of 1.9×10−5 S/cm at room temperature with an activation energy of 0.16 eV which corresponds to an electron hopping mechanism between the two charge states of Mn3+ and Mn4+ ions. A first-order phase transition is observed at 292 K.  相似文献   

15.
Herein, we reported the synthesis of uniform LiMn2O4 submicroparticles by surfactant-assisted preparation of spherical MnCO3 precursor followed by solid-state reaction. Polyethylene glycol (Mw = 1000) was used as surfactant to control the morphology and size of the MnCO3 precursor as well as the MnO2 intermediate and LiMn2O4 product. The influence of particle size, homogeneity, and crystallinity on the electrochemical performance of LiMn2O4 was intensively investigated. The test results indicate that the LiMn2O4 sample using polyethylene glycol with weight as 10% of reactants shows the best rate capability and long-term cyclability. Due to the homogeneous particles with the average size of ca. 250 nm and high crystallinity, the discharge capacities are as high as 125, 118, 114, and 100 mAh g?1 at 1, 10, 20, and 50 C rates, respectively, along with high capacity retention of 74% after 1000 cycles at 20 C.  相似文献   

16.
By employment of nano-sized pre-prepared Mn3O4 as precursor, LiMn2O4 particles have been successfully prepared by facile solid state method and sol-gel route, respectively. And the reaction mechanism of the used precursors of Mn3O4 is studied. The structure, morphology, and element distribution of the as-synthesized LiMn2O4 samples are characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Compared with LiMn2O4 synthesized by facile solid state method (SS-LMO), LiMn2O4 synthesized by modified sol-gel route (SG-LMO) possesses higher crystallinity, smaller average particle size (~175 nm), higher lithium chemical diffusion coefficient (1.17 × 10?11 cm2 s?1), as well as superior electrochemical performance. For example, the cell based on SG-LMO can deliver a capacity of 85.5 mAh g?1 at a high rate of 5 °C, and manifests 88.3% capacity retention after 100 cycles at 0.5 °C when cycling at 45 °C. The good electrochemical performance of the cell based on SG-LMO is ascribed mainly to its small particle size, high degree of dispersion, and uniform element distribution in bulk material. In addition, the lower polarization potential accelerates Li+ ion migration, and the lower atom location confused degree maintains integrity of crystal structure, both of which can effectively improve the rate capability and cyclability of SG-LMO.  相似文献   

17.
M.W. Raja  S. Mahanty  R.N. Basu 《Solid State Ionics》2009,180(23-25):1261-1266
LiMn2O4 and LiNi0.5Mn1.5O4 powders have been synthesized by a novel cost-effective carbon exo-templating process. It has been observed that controlled nucleation in the pores of highly surface active carbon produces a distinct effect on the powder morphology and crystallinity. Quantitative X-ray phase analyses show single phase spinel structure having Fd3m symmetry for both samples. Field emission electron microscopy reveals particles of size 0.5–1.0 µm with well defined multi-faceted crystals. Cyclic voltammetry results show well separated distinct redox peaks at 4.05/3.92 and 4.17/4.08 V for LiMn2O4/Li and 4.91/4.61 V for LiNi0.5Mn1.5O4/Li coin cells indicating good crystallinity and reversibility of the cathodes compared to that of pristine LiMn2O4 synthesized by conventional combustion process. The LiMn2O4/Li and LiNi0.5Mn1.5O4/Li cells deliver an initial discharge capacity of 110 mA h/g and 122 mA h/g respectively at a current density of 0.05 mA/cm2 and when cycled at 0.2 mA/cm2, the cells maintain 81% and 96% of their initial discharge capacity respectively even after 20 cycles. On the other hand, at the same current density, LiMn2O4 synthesized by conventional combustion process suffers from severe capacity fading (only 37.5% capacity retention after the 25th cycle). The capacity fading rate is found to be very less even at further higher current densities (0.4–0.8 mA/cm2) for both LiMn2O4/Li and LiNi0.5Mn1.5O4/Li cells synthesized by the templating process. The present study reveals that high crystallinity along with multi-faceted morphology shows a remarkable enhancement in capacity as well as rate performance of pristine LiMn2O4 and its Ni derivative.  相似文献   

18.
Co-coated LiMn2O4 was synthesized by electroless plating. The phase identification, surface morphology, and electrochemical properties of the synthesized powders were studied by X-ray diffraction, scanning electron microscopy, electrochemical impedance spectroscopy, and galvanostatic charge–discharge experiments, respectively. The result shows that Co-coated LiMn2O4 particle has a coarse surface with a lot of holes. The specific capacity of Co-coated LiMn2O4 is 118 mAh g−1, which is a bit less than 123 mAh g−1 for the uncoated LiMn2O4. The capacity retention of Co-coated LiMn2O4 is 11% higher than the uncoated LiMn2O4 when the electrode is cycled at room temperature for 20 times. When cycled at the temperature of 55 °C, the capacity retention of Co-coated LiMn2O4 becomes 15% higher than the uncoated one.  相似文献   

19.
A simple one-step solid state reaction way of preparing nanosized LiMn2O4 powders with high-rate properties is investigated. Oxalic acid is used as a functional material to lose volatile gases during the process of calcining in order to control the morphology and change the particle size of materials. The results of X-ray diffraction and scanning electron microscopy show that particle size of materials decreases with the increase of the oxalic acid content. The electrochemical test results indicate that optimal LiMn2O4 particles (S0.5) is synthesized when the molar ratios of oxalic acid and total Mn source are 0.5:1. It also manifests that LiMn2O4 sample with middle size has the optimal electrochemical performance among five samples instead of the smallest LiMn2O4 sample. The obtained sample S0.5 with middle size exhibits a high initial discharge capacity of 125.8 mAh g?1 at 0.2C and 91.4% capacity retention over 100 cycles at 0.5C, superior to any one of other samples. In addition, when cycling at the high rate of 10C, the optimal S0.5 in this work could still reach a discharge capacity of 80.8 mAh g?1. This observation can be addressed to the fact that the middle size particles balance the contradictory of diffusion length in solid phase and particle agglomeration, which leads to perfect contacts with the conductive additive, considerable apparent Li-ion diffusion rate, and the optimal performance of S0.5.  相似文献   

20.
LiMn2O4 films have been deposited onto silicon wafer by pulsed-laser deposition (PLD) technique in order to test their reliability as cathode materials in rechargeable lithium microbatteries. The film formation has been studied as a function of the preparation conditions, i.e., composition of the target, substrate temperature, and oxygen partial pressure in the deposition chamber. Depending on the conditions of deposition, Mn2O3 was present as an impurity phase. When deposited onto silicon substrate maintained at 300 °C in an oxygen pressure of 100 mTorr from the target LiMn2O4+15 % Li2O, the PLD films are well-textured with crystallite size of 300 nm. It is found that such a film crystallizes in the spinel structure (Fd3m symmetry) as evidenced by x-ray diffraction and Raman scattering measurements. Surface morphologies of layers were investigated by SEM. The cells Li//LiMn2O4 have been tested by cyclic voltammetry and galvanostatic charge-discharge techniques in the range 3.0–4.2 V. The voltage profiles show the two expected steps for LixMn2O4 with a specific capacity as high as 120 mC/cm2 μm. The chemical diffusion coefficients for the LixMn2O4 thin films appear to be in the range of 10−11-10−12 cm2/s. Paper presented at the 6th Euroconference on Solid State Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号