首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
RF sputtered p-type nickel oxide (NiO) thin film exhibiting tunable semiconductor character which in turns enhanced its functional properties. NiO thin film with high hole mobility is developed as a potential matrix for the realization of glucose biosensor. NiO thin film prepared under the optimized deposition conditions offer good electrical conductivity (1.5 × 10−3 Ω−1-cm−1) with high hole mobility (2.8 cm2 V−1 s−1). The bioelectrode (GOx/NiO/ITO/glass) exhibits a low value of Michaelis–Menten constant (Km = 1.05 mM), indicating high affinity of the immobilized GOx toward the analyte (glucose). Due to the high surface coverage (2.32 × 10−7 mol cm−2) of the immobilized enzyme on to the NiO matrix and its high electrocatalytic activity, the prepared biosensor exhibits a high sensitivity of 0.1 mA (mM−1-cm−2) and a good linearity from 25 to 300 mg dL−1 of glucose concentration with fast response time of 5 s. Various functional properties of the material (mobility, crystallinity and stress) are found to influence the charge communication feature of NiO thin film matrix to a great extent, resulting in enhanced sensing response characteristics.  相似文献   

2.
Dai Z  Fang M  Bao J  Wang H  Lu T 《Analytica chimica acta》2007,591(2):195-199
We have constructed a glucose biosensor by immobilizing glucose oxidase (GOD) on titanium-containing MCM-41 (Ti-MCM-41) modified screen-printed electrodes. The strategy of the sensing method is to monitor the extent of the decrease of the reduction current of O2 upon adding glucose at a selected potential. The detection can be done at the applied potential of −0.50 V and can efficiently exclude the interference from commonly coexisted substances. The constructed sensor has a high sensitivity to glucose (5.4 mAM−1 cm−2) and a linear response range of 0.10-10.0 mM. The detection limit is 0.04 mM at a signal-to-noise ratio of 3. The sensor also shows high stability and remains its catalytic activity up to 60 °C. The biocompatibility of Ti-MCM-41 means that this immobilization matrix not only can be used for immobilizing GOD but also can be extended to other enzymes and bioactive molecules, thus providing a promising platform for the development of biosensors.  相似文献   

3.
A new nanomaterial was prepared by grafting a layer of sulfonated polyaniline network (SPAN-NW) on to the surface of multi-walled carbon nanotube (MWNT) and effectively utilized for immobilization of an enzyme and for the fabrication of a biosensor. SPAN-NW was formed on the surface of MWNT by polymerizing a mixture of diphenyl amine 4-sulfonic acid (DPASA), 4-vinyl aniline (VA) and 2-acrylamido-2-methyl-1-propane sulfonic acid (APASA) in the presence of amine functionalized MWNT (MWNT-NH2). The MWNT-g-SPAN-NW was immobilized with glucose oxidase (GOx) to fabricate the SPAN-NW/GOx biosensor. MWNT-g-SPAN-NW/GOx electrode showed direct electron transfer (DET) for GOx with a fast heterogeneous electron transfer rate constant (ks) of 4.11 s− 1. The amperometric current response of MWNT-g-SPAN-NW/GOx biosensor shows linearity up to 9 mM of glucose, with a correlation coefficient of 0.99 and a detection limit of 0.11 μM (S/N = 3). At a low applied potential of − 0.1 V, MWNT-g-SPAN-NW/GOx electrode possesses high sensitivity (4.34 μA mM− 1) and reproducibility towards glucose.  相似文献   

4.
Wu B  Zhang G  Shuang S  Choi MM 《Talanta》2004,64(2):546-553
A glucose biosensor using an enzyme-immobilized eggshell membrane and oxygen electrode for glucose determination has been fabricated. Glucose oxidase was covalently immobilized on an eggshell membrane with glutaraldehyde as a cross-linking agent. The glucose biosensor was fabricated by positioning the enzyme-immobilized eggshell membrane on the surface of a dissolved oxygen sensor. The detection scheme was based on the depletion of dissolved oxygen content upon exposure to glucose solution and the decrease in the oxygen level was monitored and related to the glucose concentration. The effect of glutaraldehyde concentration, pH, phosphate buffer concentration and temperature on the response of the glucose biosensor has been studied in detail. Common matrix interferents such as ethanol, d-fructose, citric acid, sodium benzoate, sucrose and l-ascorbic acid did not give significant interference. The resulting sensor exhibited a fast response (100 s), high sensitivity (8.3409 mg L−1 oxygen depletion/mmol L−1 glucose) and good storage stability (85.2% of its initial sensitivity after 4 months). The linear response is 1.0×10−5 to 1.3×10−3 mol L−1 glucose. The glucose content in real samples such as commercial glucose injection preparations and wines was determined, and the results were comparable to the values obtained from a commercial glucose assay kit based on a spectrophotometric method.  相似文献   

5.
A colloidal suspension of nanostructured poly(N-butyl benzimidazole)-graphene sheets (PBBIns-Gs) was used to modify a gold electrode to form a three-dimensional PBBIns-Gs/Au electrode that was sensitive to hydrogen peroxide (H2O2) in the presence of acetic acid (AcOH). The positively charged nanostructured poly(N-butyl benzimidazole) (PBBIns) separated the graphene sheets (Gs) and kept them suspended in an aqueous solution. Additionally, graphene sheets (Gs) formed “diaphragms” that intercalated Gs, which separated PBBIns to prevent tight packing and enhanced the surface area. The PBBIns-Gs/Au electrode exhibited superior sensitivity toward H2O2 relative to the PBBIns-modified Au (PBBIns/Au) electrode. Furthermore, a high yield of glucose oxidase (GOD) on the PBBIns-Gs of 52.3 mg GOD per 1 mg PBBIns-Gs was obtained from the electrostatic attraction between the positively charged PBBIns-Gs and negatively charged GOD. The non-destructive immobilization of GOD on the surface of the PBBIns-Gs (GOD-PBBIns-Gs) retained 91.5% and 39.2% of bioactivity, respectively, relative to free GOD for the colloidal suspension of the GOD-PBBIns-Gs and its modified Au (GOD-PBBIns-Gs/Au) electrode. Based on advantages including a negative working potential, high sensitivity toward H2O2, and non-destructive immobilization, the proposed glucose biosensor based on an GOD-PBBIns-Gs/Au electrode exhibited a fast response time (5.6 s), broad detection range (10 μM to 10 mM), high sensitivity (143.5 μA mM−1 cm−2) and selectivity, and excellent stability. Finally, a choline biosensor was developed by dipping a PBBIns-Gs/Au electrode into a choline oxidase (ChOx) solution for enzyme loading. The choline biosensor had a linear range of 0.1 μM to 0.83 mM, sensitivity of 494.9 μA mM−1 cm−2, and detection limit of 0.02 μM. The results of glucose and choline measurement indicate that the PBBIns-Gs/Au electrode provides a useful platform for the development of oxidase-based biosensors.  相似文献   

6.
A novel glucose biosensor, based on the modification of well-aligned polypyrrole nanowires array (PPyNWA) with Pt nanoparticles (PtNPs) and subsequent surface adsorption of glucose oxidase (GOx), is described. The distinct differences in the electrochemical properties of PPyNWA–GOx, PPyNWA–PtNPs, and PPyNWA–PtNPs–GOx electrodes were revealed by cyclic voltammetry. In particular, the results obtained for PPyNWA–PtNPs–GOx biosensor showed evidence of direct electron transfer due mainly to modification with PtNPs. Optimum fabrication of the PPyNWA–PtNPs–GOx biosensor for both potentiometric and amperometric detection of glucose were achieved with 0.2 M pyrrole, applied current density of 0.1 mA cm−2, polymerization time of 600 s, cyclic deposition of PtNPs from −200 mV to 200 mV, scan rate of 50 mV s−1, and 20 cycles. A sensitivity of 40.5 mV/decade and a linear range of 10 μM to 1000 μM (R2 = 0.9936) were achieved for potentiometric detection, while for amperometric detection a sensitivity of 34.7 μA cm−2 mM−1 at an applied potential of 700 mV and a linear range of 0.1–9 mM (R2 = 0.9977) were achieved. In terms of achievable detection limit, potentiometric detection achieved 5.6 μM of glucose, while amperometric detection achieved 27.7 μM.  相似文献   

7.
In this work, we reported an efficient platinum nanoparticles functionalized nitrogen doped graphene (PtNPs@NG) nanocomposite for devising novel electrochemical glucose biosensor for the first time. The fabricated PtNPs@NG and biosensor were characterized using transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, static water contact angle, UV–vis spectroscopy, electrochemical impedance spectra and cyclic voltammetry, respectively. PtNPs@NG showed large surface area and excellent biocompatibility, and enhanced the direct electron transfer between enzyme molecules and electrode surface. The glucose oxidase (GOx) immobilized on PtNPs@NG nanocomposite retained its bioactivity, and exhibited a surface controlled, quasi-reversible and fast electron transfer process. The constructed glucose biosensor showed wide linear range from 0.005 to 1.1 mM with high sensitivity of 20.31 mA M−1 cm−2. The detection limit was calculated to be 0.002 mM at signal-to-noise of 3, which showed 20-fold decrease in comparison with single NG-based electrochemical biosensor for glucose. The proposed glucose biosensor also demonstrated excellent selectivity, good reproducibility, acceptable stability, and could be successfully applied in the detection of glucose in serum samples at the applied potential of −0.33 V. This research provided a promising biosensing platform for the development of excellent electrochemical biosensors.  相似文献   

8.
A screen-printed amperometric biosensor based on carbon ink double bulk-modified with MnO2 as a mediator and glucose oxidase as a biocomponent was investigated for its ability to serve as a detector for bonded glucose in different compounds, such as cellobiose, saccharose, (-)-4-nitrophenyl-β-d-glucopyranoside, as well as in beer samples by flow-injection analysis (FIA). The biosensor could be operated under physiological conditions (0.1 M phosphate buffer, pH 7.5) and exhibited good reproducibility and stability. Bonded glucose was released with glucosidase in solution, and the free glucose was detected with the modified screen-printed electrode (SPE). The release of glucose by the aid of glucosidase from cellobiose, saccharose and (-)-4-nitrophenyl-β-d-glucopyranoside in solution showed that stoichiometric quantities of free glucose could be monitored in all three cases.The linear range of the amperometric response of the biosensor in the FIA-mode flow rate 0.2 mL min−1, injection volume 0.25 mL, operation potential 0.48 V versus Ag/AgCl) extends from 11 to 13,900 μmol L−1 glucose in free form. The limit of detection (3σ) is 1 μmol L−1 glucose. A concentration of 100 μmol L−1 yields a relative standard deviation of approximately 7% with five injections. These values correspond to the same concentrations of bonded glucose supposed that it is liberated quantitatively (incubation for 2 h with glucosidase).Bonded glucose could be determined in beer samples using the same assay. The results corresponded very well with the reference procedure.  相似文献   

9.
Li J  Yu J  Zhao F  Zeng B 《Analytica chimica acta》2007,587(1):33-40
The direct electrochemistry of glucose oxidase (GOD) entrapped in nano gold particles (NAs)-N,N-dimethylformamide (DMF)-1-butyl-3-methylimidazolium hexafluophosphate (BMIMPF6) composite film on a glassy carbon electrode (NAs-DMF-GOD (BMIMPF6)/GC) has been investigated for first time. The immobilized GOD exhibits a pair of well-defined reversible peaks in 0.050 M pH 5 phosphate solutions (PS), resulting from the redox of flavin adenine dinucleotide (FAD) in GOD. The peak currents are three times as large as those of GOD-NAs-DMF film coated GC electrode (i.e. NAs-DMF-GOD (water)/GC). In addition, the NAs-DMF-GOD (BMIMPF6) composite material has higher thermal stability than NAs-DMF-GOD (water). Results show that ionic liquid BMIMPF6, DMF and NAs are requisite for GOD to exhibit a pair of stable and reversible peaks. Without any of them, the peaks of GOD become small and unstable. Upon the addition of glucose, the peak currents of GOD decrease and a new cathodic peak occurs at −0.8 V (versus SCE), which corresponds to the reduction of hydrogen peroxide (H2O2) generated by the catalytic oxidation of glucose. The peak current of the new cathodic peak and the glucose concentration show a linear relationship in the ranges of 1.0 × 10−7 to 1.0 × 10−6 M and 2.0 × 10−6 to 2.0 × 10−5 M. The kinetic parameter Imax of H2O2 is estimated to be 1.19 × 10−6 A and the apparent Km (Michaelis-Menten constant) for the enzymatic reaction is 3.49 μM. This method has been successfully applied to the determination of glucose in human plasma and beer samples, and the average recoveries are 97.2% and 99%, respectively.  相似文献   

10.
Qu F  Shi A  Yang M  Jiang J  Shen G  Yu R 《Analytica chimica acta》2007,605(1):28-33
Prussian blue nanowire array (PBNWA) was prepared via electrochemical deposition with polycarbonate membrane template for effective modification of glassy carbon electrode. The PBNWA electrode thus obtained was demonstrated to have high-catalytic activity for the electrochemical reduction of hydrogen peroxide in neutral media. This enabled the PBNWA electrode to show rapid response to H2O2 at a low potential of −0.1 V over a wide range of concentrations from 1 × 10−7 M to 5 × 10−2 M with a high sensitivity of 183 μA mM−1 cm−2. Such a low-working potential also substantially improved the selectivity of the PBNWA electrode against most electroactive species such as ascorbic acid and uric acid in physiological media. A detection limit of 5 × 10−8 M was obtained using the PBNWA electrode for H2O2, which compared favorably with most electroanalysis procedures for H2O2. A biosensor toward glucose was then constructed with the PBNWA electrode as the basic electrode by crosslinking glucose oxidase (GOx). The glucose biosensor allowed rapid, selective and sensitive determination of glucose at −0.1 V. The amperometric response exhibited a linear correlation to glucose concentration through an expanded range from 2 × 10−6 M to 1 × 10−2 M, and the response time and detection limit were determined to be 3 s and 1 μM, respectively.  相似文献   

11.
Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λem max = 650 nm, λex max = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O2 to produce H2O2, which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10−6–140 × 10−6 M and a detection limit of 0.7 × 10−6 M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells.  相似文献   

12.
An optical glucose biosensor was fabricated by entrapping glucose oxidase (GOx) within the xerogel that was derived from tetraethylorthosilicate and hybridised with hydroxyethyl carboxymethyl cellulose polymer. The entrapped-GOx was mainly characterised with its long-lasting apparent biocatalytic activity as compared to that being entrapped in only sol-gel matrix. The biocatalytic activity of the entrapped-enzyme has extended its shelf lifetime up to 3 years. This long-term stability was closely correlated with the reduction in the shrinkage process of the hybrid gel being used. In conjunction with an optical oxygen transducer, the entrapped-GOx was assembled as an optical glucose biosensor comprised a sample flow system with which the dissolved oxygen in the sample could be precisely controlled and varied. The analytical working range was tuneable within 9.0 μM-100 mM range depending on the dissolved oxygen concentration in the test solution. The time taken to reach a 95% steady signal was 6-9 min at flow rate of 1.0 mL min−1. The glucose biosensor has been satisfactorily applied to the determination of glucose contents of urine samples.  相似文献   

13.
The aim of our present work was to develop a flow-through measuring apparatus for the determination of glucose content as model system in organic media and to compare the properties of the biosensor in organic and in aqueous solutions. Glucose oxidase (GOx) enzyme was immobilized on a natural protein membrane in a thin-layer enzyme cell, made of Teflon. The enzyme cell was connected into a flow injection analyzer (FIA) system with an amperometric detector. After optimizing the system the optimal flow rate was found at 0.8 ml min−1. In this case 50-60 samples were measured per hour. Adding ferrocene monocarboxylic acid (FMCA) to acetonitrile and to 2-propanol the optimal concentration was 5 mg l−1, while in the case of tetrabutylammonium-p-toluenesulfonate (TBATS) the optima were 2.7 and 8.0 mg l−1, respectively. With 6% buffer in acetonitrile containing FMCA more than 100 samples could be measured with the enzyme cell without any loss of activity. Measuring the hydrogen peroxide content produced in 2-propanol, the optimal concentration of buffer solution was at about 20%. The linear measuring range was 0-0.5 mM glucose in acetonitrile and 0-1.0 mM in 2-propanol.Glucose concentration of oily food samples was measured and compared with results obtained by the reference UV-photometric method. The correlation between the results measured by the two methods was very good with correlation coefficient (r) as high as 0.976.  相似文献   

14.
Abd-Rabboh HS  Meyerhoff ME 《Talanta》2007,72(3):1129-1133
The determination of glucose in beverages is demonstrated using newly developed fluoride selective optical sensing polymeric film that contains aluminum (III) octaethylporphyrin (Al[OEP]) ionophore and the chromoionophore ETH7075 cast at the bottom of wells of a 96-well polypropylene microtiter plate. The method uses a dual enzymatic reaction involving glucose oxidase enzyme (GOD) and horseradish peroxidase (HRP), along with an organofluoro-substrate (4-fluorophenol) as the source of fluoride ions. The concentration of fluoride ions after enzymatic reaction is directly proportional to the glucose level in the sample. The method has a detection limit of 0.8 mmol L−1, a linear range of 0.9-40 mmol L−1 and a sensitivity of 0.125 absorbance/decade of glucose concentration. Glucose levels in several beverage samples determined using the proposed method correlate well with a reference spectrophotometric enzyme method based on detection of hydrogen peroxide using bromopyrogallol red dye (BPR). The new method can also be used to determine H2O2 concentrations in the 0.1-50 mmol L−1 range using a single enzymatic reaction involving H2O2 oxidation of 4-fluorophenol catalyzed by HRP. The methodology could potentially be used to detect a wide range of substrates for which selective oxidase enzymes exist (to generate H2O2), with the high throughput of simple microtiter plate detection scheme.  相似文献   

15.
A novel enzyme reactor with co-immobilization of β-galactosidase and glucose oxidase in calcium alginate fiber (CAF) and amine modified nanosized mesoporous silica (AMNMS) was prepared which incorporate the adsorption and catalysis of AMNMS with the cage effect of the polymer to increase catalytic activity and stability of immobilized enzyme. The enzyme reactor was applied to prepare a chemiluminescence (CL) flow-through biosensor for determination of lactose combined with a novel luminol-diperiodatonickelate (DPN) CL system we reported. It shows that the CL flow-through biosensor possesses long lifetime, high stability, high catalytic activity and sensitivity. The relative CL intensity was linear with the lactose concentration in the range of 8 × 10−8-4 × 10−6 g mL−1 with the detection limit of 2.7 × 10−8 g mL−1 (3σ). It has been successfully applied to the determination of lactose in milk.  相似文献   

16.
An amperometric glucose biosensor was developed using an anionic clay matrix (layered double hydroxide (LDH), Ni/Al-NO3) for the immobilization of glucose oxidase (GOx). The biofilm was prepared by electrodeposition of the clay and GOx and subsequent cross-linking with glutaraldeyde. The Pt surface modified with the Ni/Al-NO3 shows a much reduced noise, giving rise to a better signal to noise ratio for the currents relative to H2O2 oxidation, and a linear range for H2O2 determination wider than the one observed for bare Pt electrodes. Under the optimised operative conditions, the performances of the biosensor have been evaluated by measuring the steady-state currents (at +0.45 V versus SCE) to increasing concentrations of glucose in “air saturated” 0.1 M phosphate buffer (pH 7.0). Both batch and flow injection modes were explored. The response to glucose was linear up to 8.0 and 12.0 mM, and the sensitivities were 7.7 ± 0.1 and 19.1 ± 0.2 mA M−1 cm−2, respectively. The current response of the biosensors does not significantly change for 15 consecutive days in batch and for 10 days in flow, at least, if stored at 4 °C in phosphate buffer, when not in use. The effects of interferants and applicability to fruit juices and soft drinks analysis of the biosensor were also investigated.  相似文献   

17.
You C  Yan X  Kong J  Zhao D  Liu B 《Talanta》2011,83(5):1507-1514
A strategy of protein-entrapment in bicontinuous gyroidal mesoporous carbon (BGMC) nanocomposite films is described. Herein, the quasi-reversible electron transfer of redox proteins (such as glucose oxidase and myoglobin) is probed and the associated biocatalytic activity is revealed. The apparent heterogeneous electron transfer rate constant of the immobilized glucose oxidase is up to 9.4 s−1, much larger than those in carbon nanotubes and some conventional mesoporous carbons. The BGMC based glucose biosensor enables the determination of glucose at a potential of 0.6 V (vs. SCE). Its detection limit is 1.0 × 10−5 M (signal-to-noise ratio, S/N = 3), the linear response is up to 7.49 mM and the detection sensitivity is 52.5 nA mM−1 Furthermore, a series of BGMCs with different pore sizes is designed and synthesized using sucrose or phenol formaldehyde resin to study the influences of pore sizes and carbon sources on the immobilization of redox proteins and on the heterogeneous electron transfer.  相似文献   

18.
Optical biosensor for the determination of BOD in seawater   总被引:1,自引:0,他引:1  
Jiang Y  Xiao LL  Zhao L  Chen X  Wang X  Wong KY 《Talanta》2006,70(1):97-103
An automatic sensing system was developed using an optical BOD sensing film. The sensing film consists of an organically modified silicate (ORMOSIL) film embedded with an oxygen-sensitive Ru complex. A multi-microorganisms immobilization method was developed for the BOD sensing film preparation. Three different kinds of microorganisms, Bacillus licheniformis, Dietzia maris and Marinobacter marinus from seawater, were immobilized on a polyvinyl alcohol ORMOSILs. After preconditioning, the BOD biosensor could steadily perform well up to 10 months. The linear fluctuant coefficients (R2) in the range of 0.3-40 mg L−1 was 0.985 when a glucose/glutamate BOD standard was applied. The reproducible response for the BOD sensing film could be obtained within ±2.3% of the mean value in a series of 10 samples in 5.0 mg L−1 BOD standard GGA solution. The effects of temperature, pH and sodium chloride concentration on the two microbial films were studied as well. The BOD sensing system was tested and applied for the BOD determination of seawater.  相似文献   

19.
A new biochemical oxygen demand (BOD) sensing method employing a double-mediator (DM) system coupled with ferricyanide and a lipophilic mediator, menadione and the eukaryote Saccharomyces cerevisiae has been developed. In this study, a stirred micro-batch-type microbial sensor with a 560 μL volume and a two-electrode system was used. The chronamperometric response of this sensor had a linear response between 1 μM and 10 mM hexacyanoferrate(II) (r2 = 0.9995, 14 points, n = 3, average of relative standard deviation and R.S.D.av = 1.3%). Next, the optimum conditions for BOD estimation by the DM system (BODDM) were investigated and the findings revealed that the concentration of ethanol, used to dissolve menadione, influenced the sensor response and a relationship between the sensor output and glucose glutamic acid concentration was obtained over a range of 6.6-220 mg O2 L−1 (five points, n = 3, R.S.D.av 6.6%) when using a reaction mixture incubated for 15 min. Subsequently, the characterization of this sensor was studied. The sensor responses to 14 pure organic substances were compared with the conventional BOD5 method and other biosensor methods. Similar results with the BOD biosensor system using Trichosporon cutaneum were obtained. In addition, the influence of chloride ion, artificial seawater and heavy metal ions on the sensor response was investigated. A slight influence of 20.0 g L−1 chloride ion and artificial seawater (18.4 g L−1 Cl) was observed. Thus, the possibility of BOD determination for seawater was suggested in this study. In addition, no influence of the heavy metal ions (1.0 mg L−1 Fe3+, Cu2+, Mn2+, Cr3+ and Zn2+) was observed. Real sample measurements using both river water and seawater were performed and compared with those obtained from the BOD5 method. Finally, stable responses were obtained for 14 days when the yeast suspension was stored at 4 °C (response reduction, 93%; R.S.D. for 6 testing days, 9.1%).  相似文献   

20.
A flow amperometric enzymatic biosensor for the determination of glucose was constructed. The biosensor consists of a flow reactor based on porous silver solid amalgam (AgSA) and a flow tubular detector based on compact AgSA. The preparation of the sensor and the determination of glucose occurred in three steps. First, a self-assembled monolayer of 11-mercaptoundecanoic acid (MUA) was formed at the porous surface of the reactor. Second, enzyme glucose oxidase (GOx) was covalently immobilized at MUA-layer using N-ethyl-N′-(3-dimethylaminopropyl) carboimide and N-hydroxysuccinimide chemistry. Finally, a decrease of oxygen concentration (directly proportional to the concentration of glucose) during enzymatic reaction was amperometrically measured on the tubular detector under flow injection conditions. The following parameters of glucose determination were optimized with respect to amperometric response: composition of the mobile phase, its concentration, the potential of detection and the flow rate. The calibration curve of glucose was linear in the concentration range of 0.02–0.80 mmol L−1 with detection limit of 0.01 mmol L−1. The content of glucose in the sample of honey was determined as 35.5 ± 1.0 mass % (number of the repeated measurements n = 7; standard deviation SD = 1.2%; relative standard deviation RSD = 3.2%) which corresponds well with the declared values. The tested biosensor proved good long-term stability (77% of the current response of glucose was retained after 35 days).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号