首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quantitative aspects of a micellar electrokinetic chromatographic (MEKC) method for the determination of three preservatives (imidazolidinyl urea, methyl and propylparabens) in a pharmaceutical ointment are presented. Separation was carried out in a 31.2 cm long (21 cm to the detection window) × 50 μm i.d. fused silica capillary at an electric field of 960 V/cm and 25 °C. The electrolyte was 10 mM sodium dihydrogenophosphate containing 40 mM sodium dodecylsulfate (SDS) and adjusted to pH 6.1. Sample preparation consisted of a simple dispersion of the ointment in an internal standard solution (ethylparaben in the electrolyte). A 3.5 nl volume of the sample solution was introduced hydrodynamically into the capillary. The compounds detected at 200 nm were separated within 1.6 min. The method was validated with respect to specificity, linearity, accuracy, repeatability according to the International Conference on Harmonisation guidelines. Calibration curves were found to be linear for each compound (r2>0.999). Recovery studies performed by spiking an ointment placebo with the preservatives between 50 and 150% of their target concentration on 3 different days gave satisfactory results (mean recovery at each of the five concentrations ranging from 99.23 to 101.40%). The repeatability of sample preparation (n=6) was better than 2% for each of the preservatives.  相似文献   

2.
The acidity function (H0) of solutions of trifluoroacetic acid (TFA) in dichloromethane was measured by the indicator method at 298 K in the whole concentration range. The H0 value for the most acidic solution studied (12.93 M trifluoroacetic acid) is −3.09. The equation describing the dependence of H0 on the acid concentration was determined. The obtained quantitative data were used for a spectrophotometric study of the basicity of 2,9,16,23-tetra-tert-butylphthalocyanine. Two forms with different UV/vis spectra were observed and their stability constants determined.  相似文献   

3.
1H NMR spectroscopy was applied to the quantitative determination of malic and citric acids in apple, apricot, pear, kiwi, orange, strawberry and pineapple juices. Aspartic acid was studied as a potential interference. The effect of the sample pH on the chemical shifts of signals from malic, citric and aspartic acids was examined and a value of 1.0 was selected to carry out the determination. Integration of NMR signals at 2.89-2.95 and 3.00-3.04 ppm were used for calculating the concentration of malic and citric acids, respectively. At this pH the integrated signals were not overlapped. Sodium 3-(trimethylsilyl)tetradeuteropropionate (TSP) was used as an internal reference. The obtained results applying NMR procedures to analyze the juices from different fruits were compared to those obtained using enzymatic methods and both were in close agreement. The intra- and inter-day repeatability was tested for apple juice (7.86 g l−1 malic acid, 0.32 g l−1 citric acid) and apricot juice (5.06 g l−1 malic acid, 4.79 g l−1 citric acid) obtaining coefficients of variation lower than 3.4% for intra-day measures (n = 10) and lower than 3.8% for inter-day measures (n = 20).  相似文献   

4.
A chiral ligand exchange capillary electrophoresis (CLE-CE) method using Zn(II) as the central ion and l-4-hydroxyproline as the chiral ligand coordinating with γ-cyclodextrin (γ-CD) was developed for the enantioseparation of amino acids (AAs) and dipeptides. The effects of various separation parameters, including the pH of the running buffer, the ratio of Zn(II) to l-4-hydroxyproline, the concentration of complexes and cyclodextrins (CDs) were systematically investigated. After optimization, it has been found that eight pairs of labeled AAs and six pairs of labeled dipeptides could be baseline-separated with a running electrolyte of 100.0 mM boric acid, 5.0 mM ammonium acetate, 3.0 mM Zn(II), 6.0 mM l-hydroxyproline and 4.0 mM γ-CD at pH 8.2. The quantitation of AAs and dipeptides was conducted and good linearity (r2 ≥ 0.997) and favorable repeatability (RSD ≤ 3.6%) were obtained. Furthermore, the proposed method was applied in determining the enantiomeric purity of AAs and dipeptides. Meanwhile, the possible enantiorecognition mechanism based on the synergistic effect of chiral metal complexes and γ-CD was explored and discussed briefly.  相似文献   

5.
A capillary zone electrophoresis (CZE) method for separation of adenosine and N6-isopentenyladenosine (cytokinin) nucleotides was developed, optimized and validated. Aqueous solutions of several amino acids were evaluated as the background electrolyte constituents. Separation of six nucleotides in less than 20 min with high theoretical plate number (up to 400 000 for isopentenyladenosine triphosphate) was achieved using a 100 mM sarcosine/ammonia buffer at pH 10.0. The detection limits of the CZE-UV method are in the low micromolar range (0.69–1.27 μmol L−1). Good repeatability of migration times (within 1.3%), peak areas (within 1.8%) and linearity (R2 > 0.999) was achieved over the concentration range 5–1000 μmol L−1. The method was used to assay the activity of the recombinant Arabidopsis thaliana isopentenyltransferase 1 (AtIPT1). Baseline separation of isopentenylated nucleotides by CE–ESI-MS using a volatile buffer (30 mM ammonium formate; pH 10.0) was accomplished. The identities of the reaction products – isopentenyladenosine di- and triphosphate were confirmed by HPLC-QqTOF-MS. Dephosphorylation of ATP was observed as a parallel reaction.  相似文献   

6.
Arnica montana preparations have been used in Europe for centuries to treat skin disorders. Among the biologically active ingredients in the flower heads of the plant are sequiterpenes, flavonoids and phenolic acids. For the simultaneous determination of compounds belonging to the latter two groups a micellar electrokinetic capillary chromatography (MEKC) method was developed and validated. By using an electrolyte solution containing 50 mM borax, 25 mM sodium dodecyl sulfate and 30% of acetonitrile the separation of seven flavonoids and four caffeic acid derivatives was feasible in less than 20 min. The optimized system was validated for repeatability (σrel ≤ 4.4%), precision (inter-day σrel ≤ 8.13%, intra-day σrel ≤ 4.32%), accuracy (recovery rates from 96.8 to 102.4%), sensitivity (limit of detection (LOD) ≤ 4.5 μg mL−1) and linearity (R2 ≥ 0.9996), and then successfully applied to assay several plant samples. In all of them the most dominant flavonoid was found to be quercetin 3-O-glucuronic acid, whereas 3,5-dicaffeoylquinic acid was the major phenolic acid; the total content of flavonoids and phenolic acids varied in the samples from 0.60 to 1.70%, and 1.03 to 2.24%, respectively.  相似文献   

7.
The chiral resolving ability of a novel single-isomer cationic β-cyclodextrin (CD), mono-6A-propylammonium-6A-deoxy-β-cyclodextrin chloride (PrAMCD), as a chiral selector in capillary electrophoresis (CE) is reported in this work for the enantioseparation of hydroxy, carboxylic acids and amphoteric analytes. The effect of chiral selector concentration on the resolution was studied. Good resolutions were achieved for hydroxy acids. Optimum resolutions were obtained even at 3.5 mM CD concentration for carboxylic acids. The electrophoretic method showed good linearity and reproducibility in terms of migration times and peak areas, which should make it suitable for routine analysis. In addition, baseline chiral separation of a six-acid mixture was achieved within 20 min. PrAMCD proved to be an effective chiral selector for acidic analytes.  相似文献   

8.
A capillary electrophoresis (CE) and a high performance liquid chromatography (HPLC) method are described for the simultaneous determination of ethylenediaminetetraacetic acid (EDTA), S,S′-ethylenediaminedisuccinic acid (EDDS) and R,S-iminodisuccinic acid (IDS) complexing agents as their Fe(III) complexes in cosmetics like shower cream and foam bath. The non-biodegradable EDTA is used in combination with biodegradable analogues like EDDS and IDS in many commercial products. The HPLC method involves separation by reversed-phase ion pair chromatography on a C18 column using methanol-formate buffer (20 mM tetrabutylammonium hydrogen sulfate, 15 mM sodium formate adjusted to pH 4.0 with formic acid) (10:90, v/v) as mobile solvent at a flow rate of 0.8 mL min−1 at 24 °C using UV detection at 240 nm. The CE separation was performed in a fused silica capillary of 50 μm i.d. with the total length of 50 cm with a 10 mM MES and MOPSO (pH 5.5) at an applied voltage of −25 kV. The samples were introduced by applying a 50 mbar pressure for 2 s. Absorbances at 215 and 225 nm were monitored for the detection of the complexes. The methodology performance of the two methods was evaluated in terms of linearity, limit of detection (LOD), limit of quantitation (LOQ) and reproducibility. The LOD values obtained from HPLC are low when compared with CE. The applicability of both the methods was demonstrated for the analysis of cosmetic products such as shower cream and foam bath. The results obtained by both CE and HPLC were found to be comparable and in good agreement.  相似文献   

9.
Eom IY  Dasgupta PK 《Talanta》2006,69(4):906-913
A frequency-selective absorbance detection approach and its applications are described. First, a digital signal processor-lock-in amplifier (DSP-LIA)-based absorbance detector was evaluated. Compared to a simple operational amplifier (TL082CP)-based detector, the DSP-LIA-based detector showed lower noise levels, but the relative advantage was reduced under very low photocurrent levels (down to few nA). A 7 cm pathlength flow cell with this commercial LIA-based detector exhibited excellent Beer's law linearity (r2 = 0.9999) and a noise level of 7 micro absorbance units (μAU). The limit of detection (LOD, S/N = 3) for methyl orange (MO) was 7 nM with this detector. Finally, as a more affordable alternative to an LIA, a balanced demodulator integrated circuit chip was used to fabricate a dual wavelength-frequency-selective LED-based absorbance detector. This device successfully compensated refractive index (RI) effect and turbidity effect in test flow systems. The LOD for MO with this system was 8 nM.  相似文献   

10.
A quantitative method of capillary electrophoresis with sample stacking induced by moving reaction boundary (MRB) was developed for sensitive determination of oxymatrine (OMT) and matrine (MT) in rat plasma. The experimental conditions were optimized firstly. Below are the optimized experimental conditions: 20 mM sodium formate solution (HCOONa, adjusted to pH 10.70 by ammonia) as sample solution, 3 min 14 mbar sample injection, 40 mM formic buffer (HCOOH-HCOONa, pH 2.60) as stacking buffer, 7 min 14 mbar injection of stacking buffer, 100 mM HCOOH-HCOONa (pH 4.80) as separation buffer, 73 cm capillary (effective length 64 cm), 21 kV voltage, 210 nm wavelength. Under the optimized conditions, higher than 60-fold sensitivity improvement of the stacking was simply achieved as compared with capillary zone electrophoresis, and the detectable limits obtained for OMT and MT were 0.26 and 0.19 μg mL−1, respectively. Then, numerous demonstrations were carefully performed for the methodological validations of OMT and MT in rate plasma, including high specificity of method, good linearity (r = 0.9993 for OMT, r = 0.9991 for MT), fair wide linear concentration range (1.30-65.00 μg mL−1 for OMT, 0.84-42.00 μg mL−1 for MT), low limit of detection (1.03 μg mL−1 for OMT, 0.38 μg mL−1 for MT), less than 5% intra- and inter-day variance value, and higher than 96% recovery of OMT and MT in plasma. The developed method could be used for the trace analyses of OMT and MT in plasma and was finally used for the investigation on pharmacokinetic study of OMT in rat plasma.  相似文献   

11.
The determination of cationic constituents of sweat is widely recognized as a difficult analytical task due to its complex composition and minute sample volumes available for the individual analysis. Capillary electrophoresis (CE) has been evaluated as a simple routine method to measure sweat metal cations, biogenic amines, and amino acids using a sampling procedure previously developed in one of collaborative teams. The carrier electrolyte, which consisted of 10 mM 4-methylbenzylamine, 6.5 mM α-hydroxyisobutyric acid, and 2 mM 18-crown-6 at pH 4.25, allowed the separation of five cations (NH4+, K+, Ca2+, Na+, Mg2+) and four amino acids (ornithine, histidine, lysine, arginine) to be completed in about 13 min with a positive polarity of the applied voltage (30 kV). By increasing the sample volume (due to employing hydrodynamic instead of hydrostatic injection mode), it was also possible to detect indirect UV signals of Zn2+, diethanolamine, and trithanolamine. Sweat samples were collected from the fingers and forearms of three healthy male volunteers and analyzed by CE. A good repeatability and reproducibility of peak area responses based on five intraday and three inter-day assays (average %R.S.D. less than 3.5 and 2.5, respectively) were obtained. The limits of detection were in the range of 3.2-5.8 μM for alkali and alkaline-earth cations (hydrostatic injection) and 0.27-0.79 μM for other target analytes (hydrodynamic injection). The analytical results for particular analytes were found to vary, depending on the sampling spot and individual, but in general correspond well to clinical concentration ranges.  相似文献   

12.
A quantitative determination method of formic acid in apple juices is proposed by means of the proton nuclear magnetic resonance (1H NMR) technique. Formic acid gives a singlet signal at the 8.2-8.4 ppm interval of the spectrum, and its area is used to determine the concentration of the acid. 1,3,5-Benzenetricarboxylic acid is added to the juice as an internal standard. Since the chemical shift of both species varies with the pH, ascorbic acid is also added to adjust it at 2.74 and to avoid the overlapping of the signals. Recoveries between 95 and 109% are obtained when the standard addition method is applied to the juices of five different cider apple varieties. The coefficient of variation obtained is 3.9% for intra-day repeatability (n = 5), and 4.6% for inter-day repeatability (n = 10). The limit of detection is 1.49 mg/l, calculated from “3Sy/x + intercept”. The described method is direct and no previous derivatization is needed.  相似文献   

13.
Lee SH  Sohn OJ  Yim YS  Han KA  Hyung GW  Chough SH  Rhee JI 《Talanta》2005,68(2):187-192
A sequential injection analysis (SIA) system was developed to monitor the concentration of l-cysteine in biological processes on-line. It is based on the redox reaction of l-cysteine with iron(III) in the presence of 1,10-phenanthroline (phen) and the detection of the red-iron(II)-phen complex with a spectrophotometry. The system was fully automated using software written in the LabVIEW™ development environment. A number of system variables such as the flow rate of the carrier buffer solution, the volume ratio of the sample to the reagents, and the reaction coil length, etc., were evaluated to increase the sensitivity and performance of the SIA system. Under partially optimized operating conditions the performance of the SIA system was linear up to a concentration of l-cysteine of 1 mM (R2 = 0.998) with a detection limit of 0.005 mM and a sample frequency of 15 hr−1. The SIA system was employed to monitor the concentration of l-cysteine on-line in a continuously stirred reactor and a fermentation process of Saccharomyces cerevisiae. The on-line monitored data were in good agreement with the off-line data measured by a HPLC with a fluorescence detector (n = 15, R2 = 09899).  相似文献   

14.
The presence of antibiotics in the environment is of increased interest and, as modern mass spectrometers become more efficient, we are increasingly aware of traces of pharmaceuticals appearing in a wide range of environmental and biological matrices. The Q-Exactive mass spectrometer is part of these innovative hybrid high-resolution mass spectrometers (HRMS) which is often associated with peptide sequencing or metabolomics but with a limited number of studies focusing on its application to the quantification of small molecules in environmental and biological matrices. It combines the high resolving power (RP) performance of the Orbitrap with the high performance selectivity of the quadrupole. Tetracyclines (TCs) are a family comprising some of the most widely used antibiotics in veterinary medicine. This study presents the quantitative performances of the Q-Exactive by illustrating a new approach to quantify TCs using liquid chromatography coupled to a HRMS in a complex matrix, i.e., swine manure. The Q-Exactive was used at high-resolution in both full scan (FS) and targeted ion fragmentation (tMS2) modes. These two modes were optimized and compared to determine the most reliable and efficient approach to quantify TCs with good accuracy. The proposed method was optimized to obtain the best selectivity and sensitivity, thus eliminating false positive and allowing the detection of trace levels of analyte. The TCs were extracted from the matrix by sonication using McIlvaine buffer followed by an off-line solid phase extraction method to concentrate and clean the extracts. Both FS and tMS2 modes presented good linearity (R2 > 0.991) and repeatability (RSD < 15%). Mass accuracy was acceptable with values below 2 ppm. The method detection limits (MLD) calculated from the calibration curves ranged from 2.0 to 12 ng g−1 for FS mode and from 1.5 to 3.6 ng g−1 for tMS2 mode. Accuracy and interday/intraday relative standard deviations were below 21% for both modes studied. TCs were quantified in real samples of swine manure with concentrations ranging from 29 to 75 ng g−1. This study showed the possibility of using hybrid HRMS for trace detection and quantification of TCs in a complex matrix, thus avoiding false positive while achieving good selectivity and sensitivity.  相似文献   

15.
Shuqing Dong  Yuzhi Fang 《Talanta》2009,80(2):809-303
In the paper, a new kind of vitamin B12 (acquo-cobalamine) chemically modified electrode was fabricated and applied in capillary zone electrophoresis coupled with amperometric detection (CZE-AD) for simultaneous determination of six antioxidants in fruits and vegetables. The catalytic electrochemical properties of the chemically modified electrode could obviously enhance oxidation peak heights responses by about five times to glutathione, ascorbic acid, vanillic acid, chlorogenic acid, salicylic acid, and caffeic acid compared with common carbon disk electrode. Furthermore, the effects of working electrode potential, pH and concentration of running buffer, separation voltage and injection time on CZE-AD were investigated. Under the optimum conditions, the six analytes could be completely separated and detected in a borate-phosphate buffer (pH 8.4) within 15 min. Their linear ranges were from 2.5 × 10−7 to 1.0 × 10−4 mol L−1 and the detection limits were as low as 10−8 mol L−1 magnitude (S/N = 3). The proposed method has been successfully employed to monitor the six analytes in practical samples with recoveries in the range 96.0-106.0% and RSDs less than 5.0%. Above results demonstrate that capillary zone electrophoresis coupled with electrochemical detection using vitamin B12 modified electrode as detector is of convenient preparation, high sensitivity, good repeatability, and could be used in the rapid determination of practical samples.  相似文献   

16.
Cephalotaxine-type alkaloids are the anti-cancer components in twigs, leaves, roots and seeds of Cephalotaxus fortunine. It is very important to use the limited resource by finding an efficient purification technology of the alkaloids. Separation of cephalotaxine-type alkaloids in Cephalotaxus fortunine by step-pH-gradient high-speed counter-current chromatography (step-pH-gradient HSCCC) was studied in this paper. The step-pH-gradient HSCCC was performed on a HSCCC instrument equipped with a 400-mL column, using the upper phase of ethyl acetate–n-hexane–water, with added 0.01% trifluoroacetic acid (TFA) as stationary phase, and the lower phase of ethyl acetate–n-hexane–water, with added 2% NH4OH, 0.2% NH4OH and 0.05% TFA as mobile phase. For each separation, 800 mg of extract of cephalotaxine-type alkaloids was separated to yield 9.3 mg of drupacine, 15.9 mg of wilsonine, 130.4 mg of cephalotaxine, 64.8 mg of epi-wilsonine, 12.8 mg of fortunine and 35.6 mg of acetylcephalotaxine with purities 81.2%, 85.7%, 95.3%, 97.5%, 89.1% and 96.2%, respectively. The recovery of each alkaloid was more than 90%. The structures of the six alkaloids were identified by electrospray ionization mass spectrum (ESI-MS) and 1H and 13C NMR.  相似文献   

17.
Rapid analytical method for the simultaneous separation and determination of amines and organic acids is a vital interest for quality control of citrus and their products. In the present study, a simultaneous high performance liquid chromatography (HPLC) method for the rapid separation of three amines and two organic acids was developed. Chromatographic separation of compounds was achieved using Xbridge C18 column at ambient temperature, with an isocratic mobile phase of 3 mM phosphoric acid at a flow rate of 1.0 mL min−1. A photodiode array (PDA) detector was used to monitor the eluent at 223 nm and 254 nm with a total analysis time of 10 min. Extraction of amines and organic acids from citrus juice was optimized. The method was validated by tests of linearity, recovery, precision and ruggedness. The limit of detection (LOD) and limit of quantification (LOQ) for amines and ascorbic acid were determined to be 5 ng and 9.8 ng, respectively. All calibration curves showed good linearity (R2 ≥ 0.9999) within the test ranges. The recoveries of the amines and organic acids ranged between 84% and 117%. The identity of each peak was confirmed by mass spectral (MS) analysis. The developed method was successfully applied to analyze the content of amines and organic acids in six different species and two varieties of citrus. Results indicate that mandarin and Marrs sweet orange contain high level of amines, while pummelo and Rio Red grapefruit had high content of ascorbic acid (137-251 μg mL−1) and citric acid (5-22 mg mL−1). Synephrine was the major amine present in Clementine (114 μg mL−1) and Marrs sweet orange (85 μg mL−1). To the best of our knowledge, this is the first report on simultaneous separation and quantification of amines and organic acids in Marrs sweet orange, Meyer lemon, Nova tangerine, Clementine, Ugli tangelo and Wekiwa tangelo.  相似文献   

18.
The aim of our present work was to develop a flow-through measuring apparatus for the determination of glucose content as model system in organic media and to compare the properties of the biosensor in organic and in aqueous solutions. Glucose oxidase (GOx) enzyme was immobilized on a natural protein membrane in a thin-layer enzyme cell, made of Teflon. The enzyme cell was connected into a flow injection analyzer (FIA) system with an amperometric detector. After optimizing the system the optimal flow rate was found at 0.8 ml min−1. In this case 50-60 samples were measured per hour. Adding ferrocene monocarboxylic acid (FMCA) to acetonitrile and to 2-propanol the optimal concentration was 5 mg l−1, while in the case of tetrabutylammonium-p-toluenesulfonate (TBATS) the optima were 2.7 and 8.0 mg l−1, respectively. With 6% buffer in acetonitrile containing FMCA more than 100 samples could be measured with the enzyme cell without any loss of activity. Measuring the hydrogen peroxide content produced in 2-propanol, the optimal concentration of buffer solution was at about 20%. The linear measuring range was 0-0.5 mM glucose in acetonitrile and 0-1.0 mM in 2-propanol.Glucose concentration of oily food samples was measured and compared with results obtained by the reference UV-photometric method. The correlation between the results measured by the two methods was very good with correlation coefficient (r) as high as 0.976.  相似文献   

19.
In this work, a stable electrogenerated chemiluminescence (ECL) detector was developed. The detector was prepared by packing cation-exchanged resin particles in a glass tube, followed by inserting Pt wires (working electrode) in this tube and sealing. The leakage of Ru(bpy)32+ can be compensated by adding a small amount of Ru(bpy)32+ into solution phase. Coupled with high-performance liquid chromatography separation, the detector has been used for determination of itopride hydrochloride in human serum. Under the optimal conditions, the ECL intensity has a linear relationship with the concentration of itopride hydrochloride in the range of 1.0 × 10−8 g mL−1 to 1.0 × 10−6 g mL−1 and the detection limit was 3 × 10−9 g mL−1 (S/N = 3). The as-prepared ECL detector displayed good sensitivity and stability.  相似文献   

20.
Chu Q  Jiang L  Tian X  Ye J 《Analytica chimica acta》2008,606(2):246-251
Capability of fast analysis of a novel miniaturized capillary electrophoresis with carbon disk electrode amperometric detection (mini-CE-AD) system was demonstrated by determining acetaminophen and p-aminophenol in dosage forms. Factors influencing the separation and detection processes were examined and optimized. Under the optimum conditions, the end-capillary 300 μm carbon disc electrode amperometric detector offered favorable signal-to-noise characteristics at a relatively low potential (+600 mV versus Ag/AgCl) for detecting acetaminophen and p-aminophenol. Two analytes can been separated within 150 s in a 8.5 cm length capillary at a separation voltage of 2000 V using a Na2B4O7-KH2PO4 running buffer (pH 7.2). Acetaminophen and p-aminophenol could be detected down to the 1.4 × 10−6-5.9 × 10−7 mol L−1 level with linearity up to the 1.0 × 10−3 mol L−1 level examined. The inter-day repeatability for analytes in peak current (R.S.D. ≤ 2.3%) and migration times (R.S.D. ≤ 1.3%) were excellent. The proposed mini-CE-AD system should find a wide range of analytical applications in pharmaceutical formulations as an alternative to conventional CE and μ-CE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号