首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A red-shift in the emission maximum of an acidic solution of quinine sulphate is observed on exciting in the red edge of the absorption band. The edge excitation red-shift (EERS) which really is the difference in cm?1 between the emission maxima obtained on red edge excitation (REE) and on shorter wavelength excitation (SWE) depends on viscosity, temperature, deuteration of the solvent and concentration of the solute. The dependence of the EERS on these factors is due largely to a shift in the emission maximum on SWE; the REE emission shifts little. These results are explained on the basis of solvent relaxation and proton migration in the excited state.  相似文献   

2.
A quantitative study has been made of the solvent effects on the fluorescence properties of 1- and 3-methyl indole, with the aim of further understanding the origin of the unusually large Stokes shift in polar solvents. For the derivatives considered here the fluorescence transition probability is decreased in solvents of moderate and high polarities, and the spectrum shifts to the red. The data (in two-component, solute and solvent, systems) can be interpreted on the basis of the stabilisation, by solvent-solute relaxation, of a state with an increased charge-transfer character, relative to the initially excited state. Å consideration of the decay data for other indole derivatives suggests that this state has its origin in the 1L4 state (S2 in non-polar media). Thus we conclude that the appropriate label of the fluorescent state of many substituted indoles in polar solvents is 1La/CT. This is consistent with the observed solvent, temperature, time and substituent dependence of the decay kinetics of these derivatives.  相似文献   

3.
Abstract Phase sensitive detection of fluorescence was used to directly record the initially excited and the solvent-relaxed emission spectra of N-acetyl-L-tryptophanamide in propylene glycol. Emission from the initially excited state was suppressed by adjusting the phase sensitive detector to be out of phase with the emission on the short wavelength side of the fluorescence spectrum. Then, the phase sensitive intensities revealed the emission spectrum of the solvent relaxed state. Similarly, the emission from the solvent relaxed state was suppressed by adjusting the detector to be out of phase with the emission on the long wavelength side of the spectrum, allowing the spectrum of the initially excited state to be directly recorded. Distinct emission spectra could be recorded when the solvent relaxation time was comparable to the fluorescence lifetime. At higher or lower temperatures, emission occurs predominantly from a single state, and suppression of the fluorescence signal at any arbitrary wavelength resulted in suppression of the entire emission. A simple theory is described which allows the spectral relaxation times to be estimated from the phase sensitive intensities. From this analysis we obtained an activation energy for spectral relaxation of 3 kcal/mol. This activation energy is smaller than that found for the temperature dependence of fluorescence depolarization, 7.8 kcal/mol. We attribute this difference to the smaller molecular motions required for spectral relaxation.
The method of phase sensitive detection of fluorescence shows excellent resolving power and sensitivity, and this method should facilitate measurement of spectral relaxation around tryptophan residues in proteins.  相似文献   

4.
Dielectric properties of solutions of tetra-iso-pentylammonium nitrate, i-Pen 4 NNO 3 . in various dioxane-water mixtures have been studied using dielectric time domain spectroscopy (TDS). The static permittivity of the solutions s increases for low concentrations of solute but levels off to asymptotic values at higher concentrations. The limiting slopeds dc, and the asymptotic value depend on the static permittivity of the solvent mixture. The relaxation time due to the solute varies with solute concentration and depends on the solvent mixture. In the solvent mixtures of lowest permittivity the plots of relaxation time vs. concentration go through a maximum, while in the mixtures of highest permittivity the relaxation time initially decreases and then levels off to an asymptotic value. The concentration dependence of the dielectric parameters is discussed in relation to ion association.  相似文献   

5.
4‐Aminophthalimide (AP) is an extensively used molecule both for fundamental studies and applications primarily due to its highly solvent‐sensitive fluorescence properties. The fluorescence spectrum of AP in aqueous media was recently shown to be dependent on the excitation wavelength. A time‐dependent blue shift of its emission spectrum is also reported. On the basis of these findings, the excited‐state solvent‐mediated proton‐transfer reaction of the molecule, which was proposed once but discarded at a later stage, is reintroduced. We report on the fluorescence behaviour of AP and its imide‐H protected derivative, N‐BuAP, to prove that a solvent‐assisted excited‐state keto–enol transformation does not contribute to the steady‐state and time‐resolved emission behaviour of AP in aqueous media. Our results also reveal that the fluorescence of AP in aqueous media arises from two distinct hydrogen‐bonded species. The deuterium isotope effect on the fluorescence quantum yield and lifetime of AP, which was thought to be a reflection of the excited‐state proton‐transfer reaction in the system, is explained by considering the difference in the influence of H2O and D2O on the nonradiative rates and ground‐state exchange of the proton with the solvent.  相似文献   

6.
A series of molecular dynamics simulations of water-formic acid mixtures containing either an ionic solute or a neutral hydrophobic solute has been performed to study the extent of nonideality in the dynamics of these solutes for varying composition of the mixtures. The diffusion coefficients of the charged solutes, both cationic and anionic, are found to show nonideal behavior with variation of composition, and similar nonideality is also observed for the diffusion and orientational relaxation of solvent molecules in these mixtures. The diffusion coefficient of a neutral hydrophobic solute, however, decreases monotonically with increase in water concentration. We have also investigated some of the pair dynamical properties such as water-water and water-formic acid hydrogen bond relaxation and residence dynamics of water molecules in water and formic acid hydration shells. The lifetimes of water-water hydrogen bonds are found to be longer than those between formic acid carbonyl oxygen-water hydrogen bonds, whereas the lifetimes of formic acid hydroxyl hydrogen-water hydrogen bonds are longer than those of water-water hydrogen bonds. In general, the hydrogen bond lifetimes for both water-water and water-formic acid hydrogen bonds are found to decrease with increase in water concentration. Residence times of water molecules also show the same trend with increase in formic acid concentration. Interestingly, these pair dynamical properties show a monotonic dependence on composition without any maximum or minimum and behave almost ideally with respect to changes in the composition of the mixtures. The present calculations are performed with fixed-charge nonpolarizable models of the solvent and solute molecules without taking into account many-body polarization effects in an explicit manner.  相似文献   

7.
Picosecond time-resolved fluorescence (TRF) spectroscopy has been used to study transient behavior in 1,6-diphenylhexa-1,3,5-triene (DPH) and 1,8-diphenylocta-1,3,5,7-tetraene (DPO). The observation is reported of short-lived fluorescence lying to shorter wavelengths than the literature spectra for these molecules. From the vibrational structure and the solvent shift of the DPO transient spectrum in benzene with respect to hexane, the pulse-limited feature can be assigned to fluorescence from vibrationally unrelaxed levels of the Bu state. In the DPH case, the relaxation time of the transient feature is greater than the laser pulse autocorrelation width, indicating that the decay of Bu state fluorescence may be limited by vibrational relaxation in the lowest excited (Ag) state.  相似文献   

8.
By using the technique of nanosecond pulse radiolysis, pulsed electron beam induced light emission from coumarin dyes in hydrocarbon solvents has been studied. The emission spectra so obtained were similar to the optically excited fluorescence spectra. The emission lifetimes were of the same order as the fluorescence lifetimes in the respective solvents, showing that the emitting species are the same in both the cases viz. singlet excited states of the dyes. In one system viz. C 153 in cyclohexane experiments were carried out in presence of electron and hole scavengers and also the concentration dependence of emission intensity studied over a wide range. From these it is concluded that the solute excited states are formed mainly by energy transfer from the solvent excited states, part of which may arise from excitation by cerenkov light generated in the medium.  相似文献   

9.
Two anomalous emission bands in the fluorescence spectrum of 3,4-benzpyrene, dissolved in 2-methylpentane, have been studied as a function of temperature. These emissions originate from the second excited singlet state S2, and from a vibrationally excited S1 (S*1) respectively. From the temperature dependence of the relative yield and the decay time of the S*1 emission it can be concluded that the vibrational relaxation of this state is hampered. The rate constant for this relaxation process is smaller that 4 > 62;x 107 sec?1.  相似文献   

10.
Fluorescence properties of 1-pheny1-3-(4'-nitrophenyl) pyrazoline (PNP) were studied inbulk polymerization process of methylmethacrylate (MMA). The fluorescence intensity of PNPwas enhanced and the emission maximum was blue shifted with the polymerization progress. Inthe period of auto-acceleration of the polymerization the enhancement of fluorescence intensityand blue shift of peak wavelength in spectra could be observed evidently. This means that thesolvatochromic properties of PNP are influenced not only by the solvent polarity but also by theviscosity of the medium (especially by the phase transitiott). In solid state PNP emits from thecharge transfer excited state without solvent relaxation. The transient emission spectra and theresults from Bakhshiev model of solvent relaxation coincide with that from the polymerizationexperiment.  相似文献   

11.
We present a theory for the time evolution of the Stokes shift of a polar molecule in a polar solvent. The time-dependent solute—solvent interaction is calculated in a continuum model by replacing the surrounding solvent by a frequency-dependent dielectric continuum. An expression for the time dependence of the fluorescence maximum is derived. This expression can be considered a direct generalization of the well-known Ooshika—Lippert—Mataga equation to the time domain. We also present an approximate expression for the wavelength dependence of the dynamics of the Stokes shift, and find it to be consistent with recent experimental results. We have investigated the effect of polarizability of the solute molecule and found that for many molecules this effect is not negligible.  相似文献   

12.
Steady‐state and time‐resolved fluorescence behavior of coumarin 153 (C153) is investigated in a series of 1‐ethyl‐3‐methylimidazolium alkylsulfate ([C2mim][CnOSO3]) ionic liquids differing only in the length of the linear alkyl chain (n=4, 6, and 8) in the anion. The aim of the present study is to understand the role of alkyl chain length in solute rotation and solvation dynamics of C153 in these ionic liquids. The blueshift observed in the steady‐state absorption and emission maxima of C153 on going from the C4OSO3 to the C8OSO3 system indicates increasing nonpolar character of the microenvironment of the solute with increasing length of the alkyl side chain of the anion of the ionic liquids. The average solvation time is also found to increase on changing the substituent from butyl to octyl, and this is attributed to the increase in the bulk viscosity of the ILs. A steady blueshift of the time‐zero maximum of the fluorescence spectrum with increasing alkyl chain length also indicates that the probe molecule experiences a less polar environment in the early part of the dynamics. Rotational dynamics of C153 are also analyzed by using the Stokes–Einstein–Debye (SED), Gierer–Wirtz (GW), and Dote–Kivelson–Schwartz (DKS) theories. Analyses of the results seem to suggest decoupling of the rotational motion of the probe from solvent viscosity.  相似文献   

13.
The spectral and photophysical properties of a new intramolecular charge transfer (ICT) probe, namely 4′-dimethylamino-2,5-dihydroxychalcone (DMADHC) were studied in different solvents by using steady-state absorption and emission spectroscopy. Whereas the absorption spectrum undergoes minor change with increasing polarity of the solvents, the fluorescence spectrum experiences a distinct bathochromic shift in the band position and the fluorescence quantum yield increases reaching a maximum before decrease with increasing the solvent polarity. The magnitude of change in the dipole moment was calculated based on the Lippert–Mataga equation. These results give the evidence about the intramolecular charge transfer character in the emitting singlet state of this compound.  相似文献   

14.
A study of fluorescence quantum yields and fluorescence lifetimes of the cyclic azoalkanes I and II reveals a striking dependence of ΦF and τF on solvent and on isotopic substitution (OH å OD). A mechanism involving specific deactivation of the fluorescent state from a hydrogen bonded complex is proposed to rationalize the data. The observation that the quantum yield for decomposition of I does not correlate with the variation of fluorescence parameters with solvent and isotopic change leads to the conclusion that the state responsible for photoreaction proceeds the fluorescent state.  相似文献   

15.
Spectroscopic and photophysical properties of safranine O (Sf) were investigated in binary water/solvent mixtures. It was found that these properties are strongly solvent-dependent. A blue shift is observed for both the ground-state absorption and the triplet-triplet main absorption band when the solvent polarity augments. At the same time a red shift of the fluorescence emission band takes place. These facts are interpreted in terms of higher dipole moment of the dye molecule in the S(1) state as compared with the S(0) state, while a decrease in the dipole moment of the triplet state T(n) with respect to the triplet state T(1) occurs. The Stokes' shift and the fluorescence lifetime shows a linear correlation with the E(T)(30) parameter, while a non-linear behavior is observed when a correlation with models of a continuous dielectric solvent is attempted. These results suggest the operation of strong specific interactions of Sf with solvent molecules, most likely hydrogen bonding. From fluorescence lifetime and quantum yield determinations, as well as intersystem-crossing quantum yields, the solvent dependence of the photophysical kinetic parameters were obtained. The radiative fluorescence rate constant can be adequately reproduced by calculations based on the UV-Vis absorption and emission spectra, as given by the Strickler-Berg equation.  相似文献   

16.
Absorption and emission spectra, fluorescence quantum yields and lifetimes were studied for anisole in binary ethanol-water mixtures. The spectroscopic and photophysical properties show an exceptional behaviour in the aqueous solution. In water a strong nonradiative process, originating from the fluorescent state decreases the emission yield and lifetime. The results are discussed in terms of short range interactions between the solute and solvent.  相似文献   

17.
Syntheses of poly(γ‐benzyl L ‐glutamate)s (PBLGs) labeled with various fluorophores (tryptophan, dansyl, and anthracene) having different molecular weights are reported. Association of PBLG chains was studied by time‐resolved emission anisotropy in the solvents supporting the aggregation process (1,4‐dioxane and tetrahydrofuran) and in N,N‐dimethylformamide, where the aggregates were not formed. The influence of molecular weight and polymer concentration on PBLG association was studied as well. The limiting emission anisotropy (r) and rotational correlation times (ϕ) were determined. The chain relaxation dynamics were compared with the fluorescence lifetimes of the fluorophores and spectroscopically suitable labels were selected. Tryptophan was found to be an inconvenient fluorophore for the association study of PBLGs because of its short excited‐state lifetime. Dansyl and anthracene fluorophores, however, proved to be suitable labels for the chain dynamics study of PBLGs in solution. The mobilities of PBLG chains in 1,4‐dioxane were slower than those in tetrahydrofuran and N,N‐dimethylformamide because of PBLG association in this solvent.  相似文献   

18.
The photophysical properties of 5‐deazaalloxazine and 1,3‐dimethyl‐5‐deazaalloxazine were studied in different solvents. These compounds have higher values of fluorescence quantum yields and longer fluorescence lifetimes, compared to those obtained for their alloxazine analogs. Electronic structure and S0Si transitions were investigated using the ab initio methods [MP2, CIS(D), EOM‐CCSD] with the correlation‐consistent basis sets. Also the time‐dependent density functional theory (TD‐DFT) has been employed. The lowest singlet excited states of 5‐deazaalloxazine and 1,3‐dimethyl‐5‐deazaalloxazine are predicted to have the π, π* character, whereas similar alloxazines have two close‐lying π, π* and n, π* transitions. Experimental steady‐state and time‐resolved spectral studies indicate formation of an isoalloxazinic excited state via excited‐state double‐proton transfer (ESDPT) catalyzed by an acetic acid molecule that forms a hydrogen bond complex with the 5‐deazaalloxazine molecule. Solvatochromism of both 5‐deazaalloxazine and its 1,3‐dimethyl substituted derivative was analyzed using the Kamlet–Taft scale and four‐parameter Catalán solvent scale. The most significant result of our studies is that the both scales show a strong influence of solvent acidity (hydrogen bond donating ability) on the emission properties of these compounds, indicating the importance of intermolecular solute–solvent hydrogen‐bonding interactions in their excited state.  相似文献   

19.
Red-emissive π-expanded diketopyrrolopyrroles (DPPs) with fluorescence reaching λ=750 nm can be easily synthesized by a three-step strategy involving the preparation of diketopyrrolopyrrole followed by N-arylation and subsequent intramolecular palladium-catalyzed direct arylation. Comprehensive spectroscopic assays combined with first-principles calculations corroborated that both N-arylated and fused DPPs reach a locally excited (S1) state after excitation, followed by internal conversion to states with solvent and structural relaxation, before eventually undergoing intersystem crossing. Only the structurally relaxed state is fluorescent, with lifetimes in the range of several nanoseconds and tens of picoseconds in nonpolar and polar solvents, respectively. The lifetimes correlate with the fluorescence quantum yields, which range from 6 % to 88 % in nonpolar solvents and from 0.4 % and 3.2 % in polar solvents. A very inefficient (T1) population is responsible for fluorescence quantum yields as high as 88 % for the fully fused DPP in polar solvents.  相似文献   

20.
Abstract— Studies of purine absorption and emission in seven solvents differing greatly in dielectric constant and hydrogen bonding potential, reveal a variety of solvent effects. For example, the resolution of structure in the absorption spectrum, the position and/or intensity of the X2 absorption band, the intensity of fluorescence, the magnitude of the long wave-lenth tail, and the position of the X1 absorption band are differentially affected—in the order listed—by the solvents tested. Even though it is possible to correlate the extent of decrease in the n-π* tail with increasing solvent dielectric constant, probably alterations in all of these spectroscopic parameters depend most critically upon the ability of the various solvents to form hydrogen bonds with the hydrogen on N9 and/for with the non-bonding electrons on the purine nitrogens: it is tentatively concluded that the probability of hydrogen bonding is directly correlated with the electronegativity of the aza nitrogens (N7 > N3 > N1). In solvents like isopropanol not all of the non-bonding electrons must be solvated maximally in most purine molecules since there is appreciable fluorescence under conditions where a long wavelength tail is readily observed in the absorption spectrum (alternatively some noa-bonding electrons may not te relevant to fluorescence quenching.) Decreases in fluorescence yield are associated with red shifts in the fluorescence maximum, and in the solvents of highest polarity the fluorescence yield is again small indicating that glycerol and water can enhance radiationless tunneling—presumably by altering Franck-Condon configurations and/or improving electronic-vibrational coupling between solute and solvent. The quantum yield is uniform throughout the atsorption band for a given solvent, but studies in aqueous buffers varying from pH 1 to 11 show that the fluorescence yield is greater for charged than for neutral molecules. Further, the fluorescence excitation peak is red shifted in powders. Since phosphorescence is the predominant emission at 777deg;K and increases in fluorescence can be correlated with the presumed solvation of non-bonding electrons, the singlet excited state of lowest energy in ‘unperturbed’ purine must be n-π* in nature. The shape of the phosphorescence band and the decay lifetime of ? 1 sec at 77°K lead to the conclusion that the emitting triplet is a π-π* state. The eight vibrational structures in phosphorescence emission can be readily grouped into two progressions: there is an average separation of about 1300 cm-1 between peaks within a given progression, and the two sets are mutually displaced by about 500 cm-l. Individual vibrational peaks are favoured in different solvents and the whole band may be shifted up to 500 cm-l. Even larger shifts are observed in charged purine molecules and in powders (up to 3000 cm-l) and the presumed 0–0 band is not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号