首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal octaethylporphyrin M(OEP) (M=Ni, Cu, Zn, Pd, Ag, and Pt) nanowires are fabricated by a simple solution‐phase precipitative method. By controlling the composition of solvent mixtures, the diameters and lengths of the nanowires can be varied from 20 to 70 nm and 0.4 to 10 μm, respectively. The Ag(OEP) nanowires have lengths up to 10 μm and diameters of 20–70 nm. For the M(OEP) nanowires, the growth orientation and packing of M(OEP) molecules are examined by powder XRD and SAED measurements, revealing that these M(OEP) nanowires are formed by the self‐assembly of M(OEP) molecules through intermolecular π???π interactions along the π???π stacking axis, and the M2+ ion plays a key role in the nanowire formation. Using the bottom contact field effect transistor structure and a simple drop‐cast method, a single‐crystal M(OEP) nanowires‐based field effect transistor can be readily prepared with prominent hole transporting behaviour and charge‐carrier mobility up to 10?3–10?2 cm2 V?1 s?1 for holes, which are 10 times higher than that of vacuum‐deposited M(OEP) organic thin‐film transistors (OTFTs).  相似文献   

2.
Direct arylation represents an attractive alternative to the conventional cross‐coupling methods because of its step‐economic and eco‐friendly advantages. A set of simple D–A oligomeric molecules ( F‐3 , F‐5 , and F‐7 ) by integrating thiophene (T) and tetrafluorobenzene (F4B) as alternating units through a direct arylation strategy is presented to obtain high‐performance charge‐transporting materials. Single‐crystal analysis revealed their herringbone packing arrangements driven by intensive C?H???π interactions. An excellent hole‐transporting efficiency based on single‐crystalline micro‐plates/ribbons was witnessed, and larger π‐conjugation and D–A constitution gave higher mobilities. Consequently, an average mobility of 1.31 cm2 V?1 s?1 and a maximum mobility of 2.44 cm2 V?1 s?1 for F‐7 were achieved, providing an effective way to obtain high‐performance materials by designing simple D–A oligomeric systems.  相似文献   

3.
MP2 and DFT calculations with correlation consistent basis sets indicate that isolated linear anionic dialkylgold(I) complexes form moderately strong (ca. 10 kcal mol?1) Au???H hydrogen bonds with single H2O molecules as donors in the absence of sterically demanding substituents. Relativistic effects are critically important in the attraction. Such bonds are significantly weaker in neutral, strong σ‐donor N‐heterocyclic carbene (NHC) complexes (ca. 5 kcal mol?1). The overall association (>11 kcal mol?1), however, is strengthened by co‐operative, synergistic classical hydrogen bonding when the NHC ligands bear NH units. Further manipulation of the interaction by ligands positioned trans to the carbene, is possible.  相似文献   

4.
The neutral compounds [Pt(bzq)(CN)(CNR)] (R=tBu ( 1 ), Xyl ( 2 ), 2‐Np ( 3 ); bzq= benzoquinolate, Xyl=2,6‐dimethylphenyl, 2‐Np=2‐napthyl) were isolated as the pure isomers with a trans‐Cbzq,CNR configuration, as confirmed by 13C{1H} NMR spectroscopy in the isotopically marked [Pt(bzq)(13CN)(CNR)] (R=tBu ( 1′ ), Xyl ( 2′ ), 2‐Np ( 3′ )) derivatives (δ13CCN≈110 ppm; 1J(Pt,13C)≈1425 Hz]. By contrast, complex [Pt(bzq)(C≡CPh)(CNXyl)] ( 4 ) with a trans‐Nbzq,CNR configuration, has been selectively isolated from [Pt(bzq)Cl(CNXyl)] (trans‐Nbzq,CNR) using Sonogashira conditions. X‐ray diffraction studies reveal that while 1 adopts a columnar‐stacked chain structure with Pt–Pt distances of 3.371(1) Å and significant π???π interactions (3.262 Å), complex 2 forms dimers supported only by short Pt???Pt (3.370(1) Å) interactions. In complex 4 the packing is directed by weak bzq???Xyl and bzq???C≡E (C, N) interactions. In solid state at room temperature, compounds 1 and 2 both show a bright red emission (?=42.1 % 1 , 57.6 % 2 ). Luminescence properties in the solid state at 77 K and concentration‐dependent emission studies in CH2Cl2 at 298 K and at 77 K are also reported for 1 , 1·CHCl3 , 2 , 2' , 2·CHCl3 , 3 , 4 .  相似文献   

5.
Research on structure–property relationships in distyrylarylene derivatives is far behind their wide applications in optoelectronic devices due to the absence of crystal structure information. Herein, the single crystals of 4,4′‐bis(2‐thienylvinyl)biphenyl ( 1 ) and 4,4′‐bis(2‐thieno[3,2‐b]thienylvinyl)biphenyl ( 2 ) were successfully grown by the vapor transport method. Both molecules adopt the typical herringbone packing motif. However, the intermolecular C? H???π interaction in compound 2 is much stronger than that in compound 1 . The correlations of interchain interaction with film morphology, optical and electronic properties were studied. Compound 2 formed higher crystalline films with (001) and (111) orientations. The organic field‐effect transistor properties of both materials were investigated. Compound 2 showed better performance with a hole mobility higher than 0.01 cm2 V?1 s?1 and an on/off current ratio over 106. These results reveal that the intensity of C? H???π interactions can exert dramatic influences on the optical and electronic properties of distyrylarylene‐based materials.  相似文献   

6.
Compact molecular packing with short π-π stacking and large π-overlap in organic semiconductors is desirable for efficient charge transport and high carrier mobility.Thus charge transport anisotropy along different directions is commonly observed in organic semiconductors.Interestingly,in this article,we found that comparable charge transport property were achieved based on the single crystals of a bis-fused tetrathiafulvalene derivative(EM-TTP) compound along two interaction directions,that is,the multiple strong S…S intermolecular interactions and the π-π stacking direction,with the measured electrical conductivity and hole mobility of 0.4 S cm~(-1),0.94 cm~2 V~(-1) s~(-1) and 0.2 S cm~(-1),0.65 cm2 V~(-1) s~(-1),respectively.This finding provides us a new molecular design concept for developing novel organic semiconductors with isotropic charge transport property through the synergistic effect of multiple intermolecular interactions(such as S…S interactions) and π-π stacking.  相似文献   

7.
The influences of the Li???π interaction of C6H6???LiOH on the H???π interaction of C6H6???HOX (X=F, Cl, Br, I) and the X???π interaction of C6H6???XOH (X=Cl, Br, I) are investigated by means of full electronic second‐order Møller–Plesset perturbation theory calculations and “quantum theory of atoms in molecules” (QTAIM) studies. The binding energies, binding distances, infrared vibrational frequencies, and electron densities at the bond critical points (BCPs) of the hydrogen bonds and halogen bonds prove that the addition of the Li???π interaction to benzene weakens the H???π and X???π interactions. The influences of the Li???π interaction on H???π interactions are greater than those on X???π interactions; the influences of the H???π interactions on the Li???π interaction are greater than X???π interactions on Li???π interaction. The greater the influence of Li???π interaction on H/X???π interactions, the greater the influences of H/X???π interactions on Li???π interaction. QTAIM studies show that the intermolecular interactions of C6H6???HOX and C6H6???XOH are mainly of the π type. The electron densities at the BCPs of hydrogen bonds and halogen bonds decrease on going from bimolecular complexes to termolecular complexes, and the π‐electron densities at the BCPs show the same pattern. Natural bond orbital analyses show that the Li???π interaction reduces electron transfer from C6H6 to HOX and XOH.  相似文献   

8.
Current interest in lone‐pair???π (lp???π) interactions is gaining momentum in biochemistry and (supramolecular) chemistry. However, the physicochemical origin of the exceptionally short (ca. 2.8 Å) oxygen‐to‐nucleobase plane distances observed in prototypical Z‐DNA CpG steps remains unclear. High‐level quantum mechanical calculations, including SAPT2+3 interaction energy decompositions, demonstrate that lp???π contacts do not result from n→π* orbital overlaps but from weak dispersion and electrostatic interactions combined with stereochemical effects imposed by the locally strained structural context. They also suggest that the carbon van der Waals (vdW) radii, originally derived for sp3 carbons, should not be used for smaller sp2 carbons attached to electron‐withdrawing groups. Using a more adapted carbon vdW radius results in these lp???π contacts being no longer of the sub‐vdW type. These findings challenge the whole lp???π concept that refers to elusive orbital interactions that fail to explain short interatomic contact distances.  相似文献   

9.
Non‐covalent interactions involving multicenter multielectron skeletons such as boron clusters are rare. Now, a non‐covalent interaction, the nido‐cage???π bond, is discovered based on the boron cluster C2B9H12? and an aromatic π system. The X‐ray diffraction studies indicate that the nido‐cage???π bonding presents parallel‐displaced or T‐shaped geometries. The contacting distance between cage and π ring varies with the type and the substituent of the aromatic ring. Theoretical calculations reveal that this nido‐cage???π bond shares a similar nature to the conventional anion???π or π???π bonds found in classical aromatic ring systems. This nido‐cage???π interaction induces variable photophysical properties such as aggregation‐induced emission and aggregation‐caused quenching in one molecule. This work offers an overall understanding towards the boron cluster‐based non‐covalent bond and opens a door to investigate its properties.  相似文献   

10.
A study of the strong N?X????O?N+ (X=I, Br) halogen bonding interactions reports 2×27 donor×acceptor complexes of N‐halosaccharins and pyridine N‐oxides (PyNO). DFT calculations were used to investigate the X???O halogen bond (XB) interaction energies in 54 complexes. A simplified computationally fast electrostatic model was developed for predicting the X???O XBs. The XB interaction energies vary from ?47.5 to ?120.3 kJ mol?1; the strongest N?I????O?N+ XBs approaching those of 3‐center‐4‐electron [N?I?N]+ halogen‐bonded systems (ca. 160 kJ mol?1). 1H NMR association constants (KXB) determined in CDCl3 and [D6]acetone vary from 2.0×100 to >108 m ?1 and correlate well with the calculated donor×acceptor complexation enthalpies found between ?38.4 and ?77.5 kJ mol?1. In X‐ray crystal structures, the N‐iodosaccharin‐PyNO complexes manifest short interaction ratios (RXB) between 0.65–0.67 for the N?I????O?N+ halogen bond.  相似文献   

11.
The partial fluorination of polycyclic aromatic hydrocarbons often produces a layered crystal packing, where fluorinated aromatic surfaces are stacked over nonfluorinated aromatic surfaces. Herein, we report the synthesis and crystal packing of partially fluorinated [4]helicenes with steric congestion resulting from H and F atoms in the fjord region. F6‐[4]Helicene forms head‐to‐tail columnar stacks consisting of an alternate arrangement of perfluorinated and nonfluorinated naphthalene moieties. With decreasing fluorine content, aromatic stacking switched from arene?fluoroarene (ArH?ArF) hetero‐stacking to ArH?ArH/ArF?ArF homo‐stacking with the help of intermolecular C?H???F contacts in the fjord region. As a result, head‐to‐head columnar stacks appear. Therefore, the conventional ArH?ArF stacking motif is not always applicable to Fn‐[4]helicenes with twisted π‐surfaces.  相似文献   

12.
Two new electron‐rich molecules based on 3,4‐phenylenedioxythiophene (PheDOT) were synthesized and successfully adopted as hole‐transporting materials (HTMs) in perovskite solar cells (PSCs). X‐ray diffraction, absorption spectra, photoluminescence spectra, electrochemical properties, thermal stabilities, hole mobilities, conductivities, and photovoltaic parameters of PSCs based on these two HTMs were compared with each other. By introducing methoxy substituents into the main skeleton, the energy levels of PheDOT‐core HTM were tuned to match with the perovskite, and its hole mobility was also improved (1.33×10?4 cm2 V?1 s?1, being higher than that of spiro‐OMeTAD, 2.34×10?5 cm2 V?1 s?1). The PSC based on MeO‐PheDOT as HTM exhibits a short‐circuit current density (Jsc) of 18.31 mA cm?2, an open‐circuit potential (Voc) of 0.914 V, and a fill factor (FF) of 0.636, yielding an encouraging power conversion efficiency (PCE) of 10.64 % under AM 1.5G illumination. These results give some insight into how the molecular structures of HTMs affect their performances and pave the way for developing high‐efficiency and low‐cost HTMs for PSCs.  相似文献   

13.
Two [N???I+???N] halogen‐bonded dimeric capsules using tetrakis(3‐pyridyl)ethylene cavitands with different lower rim alkyl chains are synthesized and analyzed in solution and the gas phase. These first examples of symmetrical dimeric capsules making use of the iodonium ion (I+) as the main connecting module are characterized by 1H NMR spectroscopy, diffusion ordered NMR spectroscopy (DOSY), electrospray ionization mass spectrometry (ESI‐MS), and ion mobility‐mass spectrometry (TW‐IMS) experiments. The synthesis and effective halogen‐bonded dimerization proceeds through analogous dimeric capsules with [N???Ag+???N] binding motifs as the intermediates as evidenced by the X‐ray structures of (CH2Cl2)2@[ 3 a 2?Ag4?(H2O)2?OTs4] and (CH2Cl2)2@[ 3 a 2?Ag4?(H2O)4?OTs4], two structurally different capsules.  相似文献   

14.
The ternary systems of C2H4 (C2H2 or C6H6)‐MCN‐HF (M=Cu, Ag, Au) and the respective binary systems were investigated to study the interplay between metal???π interactions and hydrogen bonds. The metal???π interactions in C2H4‐MCN become stronger with the irregular order Ag<Cu<Au, while the hydrogen bonds in MCN‐HF become weaker following the same order. The metal???π interactions are weakened as the H atoms in the π system are replaced with electron‐withdrawing groups and enhanced by electron‐donating groups. Type 1 of these ternary systems, in which MCN acts as Lewis base and acid simultaneously, is more stable than type 2, in which C2H4 acts as a double Lewis base. Negative cooperativity is present in type 2 ternary systems with a weakening of the metal???π interactions and the hydrogen bonds. Positive cooperativity is found in type 1 ternary systems with an enhancement of the metal???π interactions and the hydrogen bonds, except for C2(CN)4‐AuCN‐HF‐1. The weaker metal???π interaction in C6H6‐AuCN has a greater enhancing effect on the hydrogen bond in AuCN‐HF than those in C2H4‐AuCN and C2H2‐AuCN. These synergetic effects were analyzed with the natural bond orbital and energy decomposition.  相似文献   

15.
A synthetic strategy for the generation of new molecular species utilizing a provision of nature is presented. Nano‐dimensional (23(2)×21(1)×16(1) Å3) hetero‐four‐layered trimetallacyclophanes were constructed by proof‐of‐concept experiments that utilize a suitable combination of π???π interactions between the central aromatic rings, tailor‐made short/long spacer tridentate donors, and the combined helicity. The behavior of the unprecedented four‐layered metallacyclophane system offers a landmark in the development of new molecular systems.  相似文献   

16.
The halogen bonding of furan???XY and thiophene???XY (X=Cl, Br; Y=F, Cl, Br), involving σ‐ and π‐type interactions, was studied by using MP2 calculations and quantum theory of “atoms in molecules” (QTAIM) studies. The negative electrostatic potentials of furan and thiophene, as well as the most positive electrostatic potential (VS,max) on the surface of the interacting X atom determined the geometries of the complexes. Linear relationships were found between interaction energy and VS,max of the X atom, indicating that electrostatic interactions play an important role in these halogen‐bonding interactions. The halogen‐bonding interactions in furan???XY and thiophene???XY are weak, “closed‐shell” noncovalent interactions. The linear relationship of topological properties, energy properties, and the integration of interatomic surfaces versus VS,max of atom X demonstrate the importance of the positive σ hole, as reflected by the computed VS,max of atom X, in determining the topological properties of the halogen bonds.  相似文献   

17.
Low‐temperature (200 K) protonation of [Mo(CO)(Cp*)H(PMe3)2] ( 1 ) by Et2O ? HBF4 gives a different result depending on a subtle solvent change: The dihydrogen complex [Mo(CO)(Cp*)(η2‐H2)(PMe3)2]+ ( 2 ) is obtained in THF, whereas the tautomeric classical dihydride [Mo(CO)(Cp*)(H)2(PMe3)2]+ ( 3 ) is the only observable product in dichloromethane. Both products were fully characterised (νCO IR; 1H, 31P, 13C NMR spectroscopies) at low temperature; they lose H2 upon warming to 230 K at approximately the same rate (ca. 10?3 s?1), with no detection of the non‐classical form in CD2Cl2, to generate [Mo(CO)(Cp*)(FBF3)(PMe3)2] ( 4 ). The latter also slowly decomposes at ambient temperature. One of the decomposition products was crystallised and identified by X‐ray crystallography as [Mo(CO)(Cp*)(FH???FBF3)(PMe3)2] ( 5 ), which features a neutral HF ligand coordinated to the transition metal through the F atom and to the BF4? anion through a hydrogen bond. The reason for the switch in relative stability between 2 and 3 was probed by DFT calculations based on the B3LYP and M05‐2X functionals, with inclusion of anion and solvent effects by the conductor‐like polarisable continuum model and by explicit consideration of the solvent molecules. Calculations at the MP4(SDQ) and CCSD(T) levels were also carried out for calibration. The calculations reveal the key role of non‐covalent anion–solvent interactions, which modulate the anion–cation interaction ultimately altering the energetic balance between the two isomeric forms.  相似文献   

18.
The molecular structure of the hydrocarbon 5,6;11,12‐di‐o‐phenylenetetracene (DOPT), its material characterization and evaluation of electronic properties is reported for the first time. A single‐crystal X‐ray study reveals two different motifs of intramolecular overlap with herringbone‐type arrangement displaying either face‐to‐edge or co‐facial face‐to‐face packing depicting intensive π–π interactions. Density functional theory (DFT) calculations underpin that a favorable electronic transport mechanism occurs by a charge hopping process due to a π‐bond overlap in the DOPT polymorph with co‐facial arene orientation. The performance of polycrystalline DOPT films as active organic semiconducting layer in a state‐of‐the‐art organic field effect transistor (OFET) device was evaluated and proves to be film thickness dependent. For 40 nm layer thickness it displays a saturation hole mobility (μhole) of up to 0.01 cm2 V?1 s?1 and an on/off‐ratio (Ion/Ioff) of 1.5×103.  相似文献   

19.
The structures associated with halide (F?, Cl?, Br?) complexation inside CH hydrogen‐bonding macrocyclic receptors, called triazolophanes, are characterized using density functional theory (DFT). The associated binding energies in the gas and solution phases are evaluated. The ruffles in the empty triazolophane become smoothed‐out upon Cl?‐ and Br?‐ion binding directly into the middle of the cavity. The largely pre‐organized cavity morphs into an elliptical shape to facilitate shorter hydrogen bonds in the north and south regions and longer ones west and east. The smaller F? ion sits in, and flattens‐out, only the north (or south) region. The 1,2,3‐triazoles show shorter CH???Cl? contacts than for the phenylenes. Both Cl? and Br? show the same binding geometries but Cl? has a larger binding energy consistent with its stronger Lewis basicity. Model triads were used to decompose the overall binding energy into those of its components. In the course of this triad analysis, anion polarization was identified and its contribution to the triad???Cl? binding energy estimated. Consequently, the binding energies for the individual aryl units within the comparatively non‐polarized triazolophanes were estimated. The 1,2,3‐triazoles are twice as strong as the phenylenes thus contributing most of the interaction energy to Cl?‐ion binding. Therefore, the 1,2,3‐triazoles appear to approach the hydrogen bond strengths of the NH donors of pyrrole units.  相似文献   

20.
Ab initio calculations are used to provide information on H3N???XY???HF triads (X, Y=F, Cl, Br) each having a halogen bond and a hydrogen bond. The investigated triads include H3N???Br2‐HF, H3N???Cl2???HF, H3N???BrCI???HF, H3N???BrF???HF, and H3N???ClF???HF. To understand the properties of the systems better, the corresponding dyads are also investigated. Molecular geometries, binding energies, and infrared spectra of monomers, dyads, and triads are studied at the MP2 level of theory with the 6‐311++G(d,p) basis set. Because the primary aim of this study is to examine cooperative effects, particular attention is given to parameters such as cooperative energies, many‐body interaction energies, and cooperativity factors. The cooperative energy ranges from ?1.45 to ?4.64 kcal mol?1, the three‐body interaction energy from ?2.17 to ?6.71 kcal mol?1, and the cooperativity factor from 1.27 to 4.35. These results indicate significant cooperativity between the halogen and hydrogen bonds in these complexes. This cooperativity is much greater than that between hydrogen bonds. The effect of a halogen bond on a hydrogen bond is more pronounced than that of a hydrogen bond on a halogen bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号