首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β‐Substituted chiral γ‐aminobutyric acids feature important biological activities and are valuable intermediates for the synthesis of pharmaceuticals. Herein, an efficient catalytic enantioselective approach for the synthesis of β‐substituted γ‐aminobutyric acid derivatives through visible‐light‐induced photocatalyst‐free asymmetric radical conjugate additions is reported. Various β‐substituted γ‐aminobutyric acid analogues, including previously inaccessible derivatives containing fluorinated quaternary stereocenters, were obtained in good yields (42–89 %) and with excellent enantioselectivity (90–97 % ee). Synthetically valuable applications were demonstrated by providing straightforward synthetic access to the pharmaceuticals or related bioactive compounds (S)‐pregabalin, (R)‐baclofen, (R)‐rolipram, and (S)‐nebracetam.  相似文献   

2.
A new catalytic system has been developed for the asymmetric hydrogenation of β‐secondary‐amino ketones using a highly efficient P‐chiral bisphosphine–rhodium complex in combination with ZnCl2 as the activator of the catalyst. The chiral γ‐secondary‐amino alcohols were obtained in 90–94 % yields, 90–99 % enantioselectivities, and with high turnover numbers (up to 2000 S/C; S/C=substrate/catalyst ratio). A mechanism for the promoting effect of ZnCl2 on the catalytic system has been proposed on the basis of NMR spectroscopy and HRMS studies. This method was successfully applied to the asymmetric syntheses of three important drugs, (S)‐duloxetine, (R)‐fluoxetine, and (R)‐atomoxetine, in high yields and with excellent enantioselectivities.  相似文献   

3.
A highly enantioselective formal conjugate allyl addition of allylboronic acids to β,γ‐unsaturated α‐ketoesters has been realized by employing a chiral NiII/N,N′‐dioxide complex as the catalyst. This transformation proceeds by an allylboration/oxy‐Cope rearrangement sequence, providing a facile and rapid route to γ‐allyl‐α‐ketoesters with moderate to good yields (65–92 %) and excellent ee values (90–99 % ee). The isolation of 1,2‐allylboration products provided insight into the mechanism of the subsequent oxy‐Cope rearrangement reaction: substrate‐induced chiral transfer and a chiral Lewis acid accelerated process. Based on the experimental investigations and DFT calculations, a rare boatlike transition‐state model is proposed as the origin of high chirality transfer during the oxy‐Cope rearrangement.  相似文献   

4.
An asymmetric doubly vinylogous Michael addition (DVMA) of α,β‐unsaturated γ‐butyrolactams to sterically congested β‐substituted cyclic dienones with high site‐, diastereo‐, and enantioselectivity has been achieved. An unprecedented DVMA/vinylogous Michael addition/isomerization cascade reaction affords chiral fused tricyclic γ‐lactams with four newly formed stereocenters.  相似文献   

5.
The first catalytic enantioselective γ‐boryl substitution of CF3‐substituted alkenes is reported. A series of CF3‐substituted alkenes was treated with a diboron reagent in the presence of a copper(I)/Josiphos catalyst to afford the corresponding optically active γ,γ‐gem‐difluoroallylboronates in high enantioselectivity. The thus obtained products could be readily converted into the corresponding difluoromethylene‐containing homoallylic alcohols using highly stereospecific allylation reactions.  相似文献   

6.
Herein, we describe an unprecedented cascade reaction to β‐stereogenic γ‐lactams involving Pd(II)‐catalyzed enantioselective aliphatic methylene C(sp3)?H alkenylation–aza‐Wacker cyclization through syn‐aminopalladation. Readily available 3,3′‐substituted BINOLs are used as chiral ligands, providing the corresponding γ‐lactams with broad scope and high enantioselectivities (up to 98 % ee).  相似文献   

7.
The first highly enantioselective phosphonylation of α,β‐unsaturated N‐acylpyrroles has been developed. Excellent yields (91–99 %) and enantioselectivities (up to >99 % enantiomeric excess (ee)) were observed for a broad spectrum of both phosphites and N‐acylpyrroles under mild conditions. In particular, when diethyl phosphite was employed to test the scope of the N‐acylpyrroles, almost optically pure products (98 to >99 % ee) were obtained for 20 examples of N‐acylpyrroles. Moreover, optically pure α‐substituted β‐ or γ‐amino phosphonates can be obtained by several simple transformations of the pyrrolyl phosphonates. The versatility of the N‐acylpyrrole moiety makes the phosphorus adducts powerful chiral building blocks that enable the synthesis of various phosphonate‐containing compounds. Finally, the present strategy can also be applied to the asymmetric hydrophosphonylation of N‐acylimines with high enantioselectivities (93 to >99 % ee).  相似文献   

8.
Three newly synthesized chiral selectors, namely, 2IO‐, 3IO‐, and 6IO‐carboxymethyl‐γ‐cyclodextrin, native γ‐cyclodextrin, and commercially available carboxymethylated γ‐cyclodextrin with degree of substitution of 3–6 were used as additives in a background electrolyte composed of phosphate buffer at 20 mmol/L concentration and pH 2.5. This system was used for the analysis of several biologically significant low‐molecular‐mass chiral compounds by capillary electrophoresis. The results confirmed that the position of carboxymethyl group influences the enantioseparation efficiency of all the studied analytes. The 2IO‐ and 3IO‐ regioisomers provide a significantly better resolution than native γ‐cyclodextrin, while the 6IO‐regioisomer gives only a slightly better enantioseparation than native γ‐cyclodextrin. The application of γ‐cyclodextrin possessing higher number of carboxymethyl groups led to the best resolution for the majority of the compounds analyzed.  相似文献   

9.
The chiral tridentate spiro P‐N‐S ligands (SpiroSAP) were developed, and their iridium complexes were prepared. Introduction of a 1,3‐dithiane moiety into the ligand resulted in a highly efficient chiral iridium catalyst for asymmetric hydrogenation of β‐alkyl‐β‐ketoesters, producing chiral β‐alkyl‐β‐hydroxyesters with excellent enantioselectivities (95–99.9 % ee) and turnover numbers of up to 355 000.  相似文献   

10.
An asymmetric copper‐catalyzed Sonogashira type coupling between alkynes and α‐bromoamides has been developed. This method represents a facile approach to synthetically useful β, γ‐alkynyl amides from two readily available starting materials in a highly enantioselective manner. A Bisoxazoline diphenylanaline (BOPA) serves as the effective chiral ligand. Preliminary mechanistic studies support the formation of alkyl radical species .  相似文献   

11.
The aza‐Michael addition reaction is a vital transformation for the synthesis of functionalized chiral amines. Despite intensive research, enantioselective aza‐Michael reactions with alkyl amines as the nitrogen donor have not been successful. We report the use of chiral N‐heterocyclic carbenes (NHCs) as noncovalent organocatalysts to promote a highly selective aza‐Michael reaction between primary alkyl amines and β‐trifluoromethyl β‐aryl nitroolefins. In contrast to classical conjugate‐addition reactions, a strategy of HOMO‐raising activation was used. Chiral trifluoromethylated amines were synthesized in high yield (up to 99 %) with excellent enantioselectivity (up to 98 % ee).  相似文献   

12.
Reported herein is the first example of 2‐allylazaarenes in asymmetric catalysis. Highly γ‐selective allylation was demonstrated for activated ketones, including isatins and trifluoromethyl ketones. In the presence of either an amino‐acid‐based tertiary amine or quaternary ammonium salt catalyst, two series of tertiary hydroxy‐containing moieties were installed at the remote δ‐position of azaarenes in good chemical yields, excellent enantioselectivities, and E /Z ratios. The success of current γ‐selective reactions should provide inspiration for expansion to other allylazaarene derivatives and would open up new paradigms for the synthesis of chiral γ‐ and/or δ‐functionalized azaarenes.  相似文献   

13.
The scope of the copper‐catalyzed coupling reactions between organoboron compounds and allylic phosphates is expanded significantly by employing triphenylphosphine as a ligand for copper, allowing the use of secondary alkylboron compounds. The reaction proceeds with complete γ‐E‐selectivity and preferential 1,3‐syn stereoselectivity. The reaction of γ‐silicon‐substituted allylic phosphates affords enantioenriched α‐stereogenic allylsilanes.  相似文献   

14.
A series of symmetrical chiral phase‐transfer catalysts with 4,4′,6,6′‐tetrasubstituted binaphthyl units have been designed, and these aryl‐ and trialkylsilyl‐substituted phase‐transfer catalysts, which included a highly fluorinated catalyst, were prepared. The chiral efficiency of these chiral phase‐transfer catalysts was investigated in the asymmetric alkylation of tert‐butylglycinate–benzophenone Schiff base under mild phase‐transfer conditions, and the eminent substituent effect of the 4,4′,6,6′‐positions of the binaphthyl units on enantioselection was observed. In particular, the OctMe2Si‐substituted catalyst was found to be highly efficient for the phase‐transfer alkylation of tert‐butylglycinate–benzophenone Schiff base with various alkyl halides, including sec‐alkyl halides. The highly fluorinated catalyst was also utilized as a recyclable chiral phase‐transfer catalyst by simple extraction with fluorous solvents.  相似文献   

15.
2‐Pyridylsulfone‐ and fluoroalkylated group‐activated olefins underwent highly efficient diastereo‐ and enantioselective 1,3‐dipolar cycloadditions across various aromatic and aliphatic nitrones in the presence of a chiral NiII/bis(oxazoline) catalyst. The process was tuned by 4 Å molecular sieves, chiral bis(oxazoline) ligands, reaction solvents, and temperature. A wide array of optically pure fluoroalkylated isoxazolidines were obtained, thus facilitating the asymmetric synthesis of an enantioenriched α‐trifluoromethylated γ‐amino alcohol in gram‐scale and a trifluoromethylated derivative of 1,3‐oxazinan‐2‐one with potential pharmaceutical interest. A stereochemical model, based on the absolute configuration of one adduct and some control experiments, was postulated to account for the observed endo‐ and enantioselectivity.  相似文献   

16.
Despite the burgeoning demand for fluorine‐containing chemical entities, the construction of CF3‐containing stereogenic centers has remained elusive. Herein, we report the strategic merger of CuI/base‐catalyzed enolization of an α‐CF3 amide and Pd0‐catalyzed allylic alkylation in an enantioselective manner to deliver chiral building blocks bearing a stereogenic carbon center connected to a CF3, an amide carbonyl, and a manipulable allylic group. The phosphine complexes of CuI and Pd0 engage in distinct catalytic roles without ligand scrambling to render the dual catalysis operative to achieve asymmetric α‐allylation of the amide. The stereoselective cyclization of the obtained α‐CF3‐γ,δ‐unsaturated amides to give tetrahydropyran and γ‐lactone‐fused cyclopropane skeletons highlights the synthetic utility of the present catalytic method as a new entry to non‐racemic CF3‐containing compounds.  相似文献   

17.
A novel concept for catalytic asymmetric coupling reactions is presented. Merging organocatalysis with single‐electron oxidation by using a catalytic amount of a copper(II) salt and air as the terminal oxidant, we have developed a highly stereoselective carbon–carbon oxidative coupling reaction of α,β‐unsaturated aldehydes. The concept relies on the generation of a dienamine intermediate, which is oxidized to an open‐shell activated species that undergoes highly selective γ‐homo‐ and γ‐heterocoupling reactions. In the majority of examples presented, only a single stereoisomer was formed.  相似文献   

18.
Enantiomers of Tröger's base were separated by capillary electrophoresis using 2IO‐, 3IO‐, and 6IO‐carboxymethyl‐α‐, β‐, and γ‐cyclodextrin and native α‐, β‐, and γ‐cyclodextrin as chiral additives at 0–12 mmol/L for β‐cyclodextrin and its derivatives and 0–50 mmol/L for α‐ and γ‐cyclodextrins and their derivatives in a background electrolyte composed of sodium phosphate buffer at 20 mmol/L concentration and pH 2.5. Apparent stability constants of all cyclodextrin–Tröger's base complexes were calculated based on capillary electrophoresis data. The obtained results showed that the position of the carboxymethyl group as well as the cavity size of the individual cyclodextrin significantly influences the apparent stability constants of cyclodextrin–Tröger's base complexes.  相似文献   

19.
Facile, alternative synthetic routes to 6 , (R)‐6 , and (S)‐6 ‐3‐benzyl‐N‐(2,6‐dimethylphenyl)‐1,3‐oxazolidine‐4‐carboxamides ( 6 ), a chiral oxazolidine derivative of tocainide, are reported. The synthetic routes described herein also afforded 11 ‐, (R)‐11 ‐, and 12 , which present the imidazolidin‐4‐one core and belong to a class of compounds interesting for their biological activities. All the final compounds and intermediates were fully characterized. Enantiomeric excesses of homochiral 6 and 11 were determined by capillary electrophoresis analysis using 2‐hydroxypropyl‐β‐cyclodextrin or highly sulfated γ‐cyclodextrin as chiral selectors. J. Heterocyclic Chem., (2010)  相似文献   

20.
A series of chiral mono‐, di‐, and trinuclear gold(I) complexes have been prepared and used as precatalysts in the asymmetric cyclohydroamination of N‐protected γ‐allenyl sulfonamides. The stereodirecting ligands were mono‐, di‐, and tridentate 2,5‐diphenylphospholanes, which possessed C1, C2, and C3 symmetry, respectively, thereby rendering the catalytic sites in the di‐ and trinuclear complexes symmetry equivalent. The C3‐symmetric trinuclear complex displayed the highest activity and enantioselectivity (up to 95 % ee), whilst its mono‐ and dinuclear counterparts exhibited considerably lower enantioselectivities and activities. A similar trend was observed in a series of mono‐, di‐, and trinuclear 2,5‐dimethylphospholane gold(I) complexes. Aurophilic interactions were established from the solid‐state structures of the trinuclear gold(I) complexes, thereby raising the question as to whether these secondary forces were responsible for the different catalytic behavior observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号