首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
The magnetic excitations in the field induced ferromagnetic phase F3 of a NdCu2 single crystal were investigated by means of inelastic neutron scattering experiments. A mean field model using the random phase approximation in connection with anisotropic magnetic bilinear R-R (R denotes a rare earth) exchange interactions is proposed to account for the observed dispersion. The relevance of this model to the analysis of the magnetic ordering process in other RCu2 compounds is discussed. Received 21 April 1999  相似文献   

2.
ErCl3 crystallizes in the AlCl3-type layer structure. The crystal structure was refined in the paramagnetic state by powder neutron diffraction. The monoclinic lattice parameters at 1.5 K are a = 6.8040(3)?, b = 11.7456(5)?, c = 6.3187(3)? and . The space group is C2/m. Short-range, predominantly in-plane, magnetic ordering occurs above 350 mK up to several Kelvin. Below mK a three-dimensional antiferromagnetic order with a propagation vector of sets in. The magnetic structure of ErCl3 was determined by powder and single-crystal neutron diffraction at temperatures down to 45 mK. The Er3+ ions are located on two-dimensional honeycomb layers in the ab plane. There are two antiferromagnetically coupled triangular sublattices which form right- and left-handed helices along the c-axis. The magnetic moments are oriented in the ab plane and amount to 3.3(1) at saturation. From the temperature dependence of the integrated neutron magnetic peak intensity a critical exponent (2) was derived for the magnetic phase transition. Received 1 December 1999 and Received in final form 21 July 2000  相似文献   

3.
The magnetoelastic properties of GdCu2 have been investigated by thermal expansion and magnetostriction measurements. GdCu2 orders antiferromagnetically with a noncollinear magnetic structure. The anisotropic magnetostriction is of similar magnitude as in other RCu2 compounds and can be explained by a contribution of the bilinear exchange interaction to the magnetoelastic energy. For several compounds this contribution is as important as the single ion magnetoelastic exchange. The pressure dependence of the Néel temperature of GdCu2 is found to be in agreement with the data of thermal expansion.  相似文献   

4.
Thermal expansion and forced magnetostriction measurements are reported on two Gd intermetallic compounds which order magnetically below 10 K. The relative influence of the electronic, lattice and magnetic degrees of freedom was determined using results obtained on a non-magnetic isostructural compound. A Grüneisen analysis revealed that whilst the magnetic contribution to the specific heat is similar for both Pd2GdIn and Cu2GdIn the spontaneous magnetostriction was significantly smaller in the Pd compound. Forced magnetostriction measurements suggest that the thermal expansion in Pd2GdIn is primarily associated with spin fluctuations in the Pd 4d band. It is suggested that these additional degrees of freedom give rise to the enhanced specific heat observed in Pd2GdIn. Received 28 July 1999  相似文献   

5.
We have studied in detail the crystal and magnetic structures of the oxyphosphates MFePO5 (M: divalent transition metal) using neutron powder diffraction as a function of temperature. All of them are isomorphic to the mixed valence compound α-Fe2PO5 with space-group Pnma. No disorder exists between the two metallic sites. The M2+O6 octahedra share edges between them and faces with Fe3+O6 octahedra building zigzag chains running parallel to the b-axis that are connected by PO4 tetrahedra. The topology of this structure gives rise to a complex pattern of super-exchange interactions responsible of the observed antiferromagnetic order. The magnetic structures are all collinear with the spin directed along the b-axis except for M = Co. The experimental magnetic moments of Cu+2 and Ni2+ correspond to the expected ionic value, on the contrary the magnetic moment of Fe3+ is reduced, probably due to covalence effects, and that of Co2+ is greater than the spin-only value indicating a non negligible orbital contribution. Using numerical calculations we have established a magnetic phase diagram adapted for this type of crystal structure and determined the constraints to be satisfied by the values of the exchange interactions in order to obtain the observed magnetic structure as the ground state. Received 15 December 2000 and Received in final form 25 June 2001  相似文献   

6.
The magnetostriction of the Ising antiferromagnet DyCrO3 during metamagnetic transitions induced by a magnetic field applied along the a and b axes of the crystal is investigated experimentally and theoretically. The magnetostriction measurements performed in the temperature range 1.5–4.2 K in magnetic fields up to 3 T clearly reveal the two-step character of the transition from the original antiferromagnetic structure to the ferromagnetic structure with the intermediate formation of a low-symmetry structure (when H is parallel to the a axis). The unusual behavior of the magnetostriction discovered during the magnetizing process provides information on the nature of magnetostriction in rare-earth Ising metamagnets. Fiz. Tverd. Tela (St. Petersburg) 39, 668–670 (April 1997)  相似文献   

7.
Magnetovolume effect in Nd7Rh3 single crystal has been studied by measuring the magnetostriction as a function of external magnetic field at 4.2 K. An irreversible magnetovolume effect having a negative remanent volume magnetostriction was observed when the external magnetic field was applied along the b-axis. The irreversible magnetostrictive effect takes place in the longitudinal magnetostriction along the b-axis. The remanent magnetostriction along the b-axis relaxes after removing external magnetic field for several hours and equilibrium state is stabilized.  相似文献   

8.
We report the effect of replacing Cu by Pd in RCu5 (R=Pr, Nd, Sm and Eu). The parent RCu5 compounds crystallize in the hexagonal CaCu5-type structure. The hexagonal symmetry is retained in PrCu4Pd and EuCu5−xPdx (x=1 and 2) but the crystal structure changes to cubic AuBe5-type in PrCu3Pd2, NdCu5−xPdx (x=1 and 2) and SmCu4Pd. Substitution with Pd leads to lattice expansion and modifies the magnetic behavior. While PrCu5 is known to be a van-Vleck paramagnet with a singlet ground state, PrCu4Pd and PrCu3Pd2 show ferromagnetic-like behavior at low temperatures. SmCu4Pd orders ferromagnetically near 28 K in contrast to the antiferromagnetic nature of the parent SmCu5. The divalent nature of the Eu ions in EuCu5 is retained in the ternary alloys, but the Curie temperature is reduced from 57 to 24.5 and 14.5 K in EuCu4Pd and EuCu3Pd2, respectively, inferred from the location of peak in the heat capacity of these two compounds. The magnetic hyperfine field at the Eu nucleus measured with 151Eu Mössbauer spectroscopy in the ternary Eu-alloys is comparable to that in EuCu5. The magnetic behavior of NdCu4Pd is similar to that reported in NdCu5. The zero-field-cooled, low-field magnetization of NdCu3Pd2 shows a region of diamagnetic behavior roughly between 21 and 4 K, but the field-cooled response is positive.  相似文献   

9.
We present measurements of the attenuation and phase velocity of surface acoustic waves in thin YBa2Cu3O films as a function of temperature, in magnetic fields up to 3.6 T applied parallel to the c-axis of the films. We have observed anomalies in both, the attenuation and the phase velocity in the vicinity of the superconducting critical temperature which do not depend on the magnetic field. Possible origins of these anomalies, observed, to our knowledge, for the first time in YBa2Cu3O thin films, are discussed and compared to bulk acoustic wave experiments. We present a kind of feedback technique for surface acoustic waves which improves the sensitivity of this type of measurement. The actual sensitivity limits are mentioned. Received: 7 August 1997 / Revised: 7 November 1997 / Accepted: 17 November 1997  相似文献   

10.
Resistivity, thermoelectric power and magnetotransport measurements have been performed on single crystals of the quasi two-dimensional monophosphate tungsten bronzes (PO2)4(WO3)2m for m =5 with alternate structure, between 0.4 K and 500 K, in magnetic fields of up to 36 T. These compounds show one charge density instability (CDW) at 160 K and a possible second one at 30 K. Large positive magnetoresistance in the CDW state is observed. The anisotropic Shubnikov-de Haas and de Haas-van Alphen oscillations detected at low temperatures are attributed to the existence of small electron and hole pockets left by the CDW gap openings. Angular dependent magnetoresistance oscillations (AMRO) have been found at temperatures below 30 K. The results are discussed in terms of a weakly corrugated cylindrical Fermi surface. They are shown to be consistent with a change of the Fermi surface below 30 K. Received 23 November 1999 and Received in final form 23 March 2000  相似文献   

11.
A neutron diffraction study, as a function of temperature, of the title compounds is presented. The whole family (space group Immm, a ≈ 3.8?, b ≈ 5.8?, c ≈ 11.3?) is structurally characterised by the presence of flattened NiO6 octahedra that form chains along the a-axis, giving rise to a strong Ni-O-Ni antiferromagnetic interaction. Whereas for Y-compound only strong 1D correlations exist above 1.5 K, presenting the Haldane gap characteristic of 1D AF chain with integer spin, 3D AF ordering is established simultaneously for both R and Ni sublattices at temperatures depending on the rare earth size and magnetic moment. The magnetic structures of R2BaNiO5 ( R = Nd, Tb, Dy, Ho, Er and Tm) have been determined and refined as a function of temperature. The whole family orders with a magnetic structure characterised by the temperature-independent propagation vector = (1/2, 0, 1/2). At 1.5 K the directions of the magnetic moments differ because of the different anisotropy of the rare earth ions. Except for Tm and Yb (which does not order above 1.5 K), the magnetic moment of the R3+ cations are close to the free-ion value. The magnetic moment of Ni2+ is around 1.4 , the strong reduction with respect to the free-ion value is probably due to a combination of low-dimensional quantum effects and covalency. The thermal evolution of the magnetic structures from T N down to 1.5 K is studied in detail. A smooth re-orientation, governed by the magnetic anisotropy of R3+, seems to occur below and very close to T N in some of these compounds: the Ni moment rotates from nearly parallel to the a-axis toward the c-axis following the R moments. We demonstrate that for setting up the 3D magnetic ordering the R-R exchange interactions cannot be neglected. Received 19 July 2001  相似文献   

12.
The volume, shape and microstructure of solids can be influenced by magnetic fields. Much effort is focused on magnetic shape memory (MSM) materials. Recently, the MSM effect has been discovered to occur also in the paramagnetic state, e.g. in RCu2 compounds (R = rare earth). RMSM materials distinguish themselves from conventional MSM materials by the new origin of the magnetoic anisotropy: the strong rare-earth single ion anisotropy. Due to the pseudo-hexagonal symmetry of RCu2, three orientational variants exists, each of them rotated by about 60 deg with respect to the others. Switching these variants by an external field results in a change of the macroscopic shape. The strain is in the order of one percent (= Giant MagnetoStrain). The variant's fraction remains unchanged when ramping down the field. The virgin state can be recovered by heating or by a perpendicularly directed field. We present temperature and field dependent measurements of magnetostrain and magentization at the model substance Tb0.5Dy0.5Cu2. The macroscopic characterization of the sample is complemented by a detailed microscopic analysis done by elastic neutron scattering. Although the GMS effect of RCu2 was worked out at single crystals, the principle of this magneto-mechanical coupling phenomenon is also useful for polycrystalline or microscaled applications. The existence of this structural irreversibility shows the potential to construct field controlled actuators or switches.  相似文献   

13.
An extensive study of small angle neutron scattering was performed in twinned YBa2Cu3O7 crystals in its superconducting state as a function of the angle between the c-axis of the crystal and the magnetic field. The half of the twin boundaries are oriented in the horizontal plane, which also contains the neutron beam and the magnetic field. Two different diffraction patterns are studied as a function of at 5 K and B = 0.5 T, one along the c-axis of the crystal, the other one along the applied field. These variations are interpreted in the model of accommodation of the vortices on the twin planes by zigzagging from these planes to the ab-planes of the crystal, in order to minimize their energy. Received: 9 March 1998 / Revised and Accepted: 12 June 1998  相似文献   

14.
We report on transverse field (TF) Muon Spin Rotation (μSR) measurements on a single crystal of the hexagonal heavy fermion superconductor UNi2Al3 between 5 K and 300 K. From the measured muon Knight shift (KS) in the easy ( a , b )-plane and along the c-axis we extracted the local magnetic susceptibility tensor [0pt] , which arises from the nearest U-neighbors. By comparison with the bulk susceptibility [0pt] it is found that [0pt] and [0pt] agree well above 150 K but deviate considerably in the basal plane below 150 K, due to the disturbance introduced by the . We succeed in reproducing both [0pt] and [0pt] on the basis of a crystalline electric field (CEF)-approach assuming U to be in the tetravalent state. The disturbance introduced by the affects the CEF-Hamiltonian in an expected manner, suggesting strongly that a CEF-picture implying a rather local 5 f-electron wave function is indeed valid. Reanalyzing older data on UPd2Al3 we arrive at the same conclusion. A necessary condition for extracting the local susceptibility was the knowledge of the -site, this information was derived from the analysis of the TF-relaxation rates. At low temperatures we found about 30% of the implanted at the d-site and none at this site above 200 K. The majority fraction was found to be in a tunneling state over six m (or k)-sites around the b-site. No long range diffusion was seen up to room temperature. Received 20 April 1999  相似文献   

15.
High resolution data on low energy phonon branches (acoustic and soft optic) along the three principal symmetry axes in pure KTaO3 were obtained by cold neutron inelastic scattering between 10 and 80 K. Additional off-principal axis measurements were performed to characterize the dispersion anisotropy (away from the and axes). The parameters of the phenomenological model proposed by Vaks [28] are refined in order to successfully describe the experimental low temperature (10 < T < 100 K) dispersion curves, over an appreciable reciprocal space volume around the zone center ( rlu). The refined model, which involves only 4 temperature-independent adjustable parameters, is intended to serve as a basis for quantitative computations of multiphonon processes. Received: 29 September 1999 and Received in final form 6 January 2000  相似文献   

16.
Single crystal magnetization measurements and powder neutron diffraction on tetragonal ErRu2Ge2 as well as anisotropy of the paramagnetic susceptibility and specific heat measurements on ErRu2Si2 are presented. Besides the huge crystal field contribution to the uniaxial anisotropy, which favors the basal plane, a strong in-plane anisotropy is evidenced. From these features and neutron diffraction experiments it is shown that magnetic structures of these materials are double-Q and accordingly non-colinear below their Néel temperature (5.2 and 6.0 K for Ge and Si based compounds, respectively). The magnetic structures induced during the metamagnetic processes are discussed. Received 24 December 1999  相似文献   

17.
The anisotropy of MgB2 is still under debate: its value, strongly dependent on the kind of sample and on the measuring method, ranges between 1.2 and 13. In this work we present our results on MgB2 c-oriented superconducting thin film. To evaluate the anisotropy, we followed two different approaches. Firstly, magnetoresistivity was measured as a function of temperature at selected magnetic fields applied both parallel and perpendicular to the c-axis; secondly, we measured magnetoresistivity at selected temperatures and magnetic fields, varying the angle θ between the magnetic field and the c-axis. The anisotropy estimated from the ratio between the upper critical fields parallel and perpendicular to the c-axis and the one obtained in the framework of the scaling approach within the anisotropic Ginzburg-Landau theory are different but show a similar trend in the temperature dependence. Some differences in the upper critical field and in its anisotropy of our film with respect to single crystals are emphasized: some of these aspects can be accounted for by an analysis of upper critical fields within a two-band model in presence of disorder and/or crystallographic strain. Received 12 July 2002 / Received in final form 17 September 2002 Published online 29 November 2002  相似文献   

18.
The element distributions and the magnetic ordering behaviour of compounds RNi10Si2 (R = Tb, Dy, Ho, Er, Tm) have been studied by neutron powder diffraction down to temperatures of 1.6 K. The compounds crystallize in an ordered variant of the ThMn12 structure type in the tetragonal space group P4/nmm. An ordered 1:1 distribution of Ni and Si on sites 4d and 4e, respectively, corresponds to a modulation vector [0, 0, 1] with respect to the space group I4/mmm of the ThMn12 structure. TbNi10Si2 orders antiferromagnetically below T N = 4.5 K with a magnetic propagation vector of [0, 0, 1/2]. The magnetic Tb moments, 8.97(2) /Tb atom at 1.6 K, are aligned along the c-axis. The Ni sites in TbNi10Si2 do not carry any ordered magnetic moments. The compounds with R = Dy, Ho, Er, and Tm are paramagnetic down to 1.6 K and 3.0 K, respectively. Received 10 July 2002 / Received in final form 12 September 2002 Published online 29 October 2002  相似文献   

19.
Neutron-diffraction experiments reveal that ErFe6Ga6 forms in the tetragonal ThMn12-type of structure (space group I4/mmm). The Fe sublattice orders ferromagnetically below K. The Er moments order antiparallel to the Fe moments which, below about 250 K, leads to a decrease of the total magnetization. The easy magnetization direction of ErFe6Ga6 is perpendicular to the c-axis in the whole temperature range. Refinement at 2 K shows that ErFe6Ga6 orders ferrimagnetically with Er moments of 8.5 (2) and Fe moments at the 8(j) site of 1.9 (1) and at the 8(f) site of 1.7 (1) , respectively. At room temperature, ErFe6Ga6 exhibits the same type of magnetic order, however with substantially lower Er moments of 1.0 (4) and Fe moments at the 8(f) site of 1.2 (2) . The Fe moments at the 8(j) site amount to 1.9 (5) /Fe. Received 24 November 1999 and Received in final form 27 March 2000  相似文献   

20.
It is shown that the layered antiferromagnetic order in stoechiometric cannot be understood purely from electronic interactions. On the contrary, it mainly results from strong cooperative Jahn-Teller deformation. Those involve a compression of the Mn-O octahedron along the c-axis (mode Q 3 < 0), while alternate Jahn-Teller deformations occur in the ab-plane (mode Q2). These deformations stabilize a certain type of orbital ordering. The resulting superexchange couplings are calculated by exact diagonalization, taking into account both eg and t2g orbitals. The main result is that antiferromagnetic (ferromagnetic) coupling along the c-direction (ab-planes) can be understood only if the Jahn-Teller energy is much larger than the superexchange couplings, which is consistent with experiments. This mechanism contrasts with that based on weak Jahn-Teller coupling which instead predicts elongation along the c-axis (Q 3 > 0). The crucial role of the deformation anisotropy is also emphasized. Received 24 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号