首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
PurposeTo investigate the in-vivo precision and clinical feasibility of 3D-QALAS - a novel method for simultaneous three-dimensional myocardial T1- and T2-mapping.MethodsTen healthy subjects and 23 patients with different cardiac pathologies underwent cardiovascular 3 T MRI examinations including 3D-QALAS, MOLLI and T2-GraSE acquisitions. Precision was investigated in the healthy subjects between independent scans, between dependent scans and as standard deviation of consecutive scans. Clinical feasibility of 3D-QALAS was investigated for native and contrast enhanced myocardium in patients. Data were analyzed using mean value and 95% confidence interval, Pearson correlation, Paired t-tests, intraclass correlation and Bland-Altman analysis.ResultsAverage myocardial relaxation time values and SD from eight repeated acquisitions within the group of healthy subjects were 1178 ± 18.5 ms (1.6%) for T1 with 3D-QALAS, 52.7 ± 1.2 ms (2.3%) for T2 with 3D-QALAS, 1145 ± 10.0 ms (0.9%) for T1 with MOLLI and 49.2 ± 0.8 ms (1.6%) for T2 with GraSE.Myocardial T1 and T2 relaxation times obtained with 3D-QALAS correlated very well with reference methods; MOLLI for T1 (r = 0.994) and T2-GraSE for T2 (r = 0.818) in the 23 patients. Average native/post-contrast myocardial T1 values from the patients were 1166.2 ms/411.8 ms for 3D-QALAS and 1174.4 ms/438.9 ms for MOLLI. Average native myocardial T2 values from the patients were 53.2 ms for 3D-QALAS and 54.4 ms for T2-GraSE.ConclusionsRepeated independent and dependent scans together with the intra-scan repeatability, demonstrated all a very good precision for the 3D-QALAS method in healthy volunteers. This study shows that 3D T1 and T2 mapping in the left ventricle is feasible in one breath hold for patients with different cardiac pathologies using 3D-QALAS.  相似文献   

2.
《Solid State Ionics》2006,177(19-25):1879-1881
The double ordered perovskites NdBaCo2O5 and NdBaCo2O6 were prepared by soft chemistry. The samples were characterized from a structural and chemical point of view, concomitantly with their physical properties. Upon reduction, NdBaCo2O5 is formed with a tetragonal unit cell (a = b = 3.94 Å, c = 7.57 Å) and presents an antiferromagnetic behavior. Upon oxidation, a complete stoichiometric ordered phase NdBaCo2O6 with a tetragonal unit cell (a = b = 3.88 Å, c = 7.63 Å) could be obtained with a ferromagnetic and a metallic behavior. Finally it is shown that these phases are able to reversibly catch and release oxygen, suggesting a high anionic conductivity.  相似文献   

3.
An InGaAS/GaAs heterostructure transistor utilizing a gradedInxGa1  xAs channel grown by low-pressure metal-olorganic chemical vapor deposition has been demonstrated. A negative differential resistance (NDR) phenomenon is observed. Electron mobilities are significantly improved by using the graded InGaAs channel. For the In composition varying fromx =  0.25 (at the buffer–channel interface) to x =  0.1 (at the spacer–channel interface) structure, a peak extrinsic transconductance of 24.6 S mm  1(atVDS =  6.5 V,VGSstep =   0.5 mV) and a saturation current density as high as 555 mA mm  1for a gate length of 1.5 μ m are obtained.  相似文献   

4.
《Journal of Molecular Liquids》2006,123(2-3):139-145
(p, ρ, T) and (ps, ρs, Ts) properties, and apparent molar volumes Vϕ of LiI (aq) at T = 298.15 to 398.15 K, at pressures up to p = 60 MPa were reported, and apparent molar volumes at infinite dilution Vϕ0 have been evaluated. An empirical correlation for density of lithium iodide (aq) with pressure, temperature and molality was derived. The experiments were carried out at molalities m = 0.11053, 0.32532, 0.70013, 1.40459, 2.95059, and 4.88147 mol kg 1 of lithium iodide.  相似文献   

5.
We have investigated the electrical and optical properties of an nBn based Type-II InAs/GaSb strained layer superlattice detector as a function of absorber region background carrier concentration. Temperature-dependent dark current, responsivity and detectivity were measured. At T = 77 K and Vb = 0.1 V, with two orders of magnitude change in doping concentration, the dark current density increased from ~0.3 mA/cm2 to ~0.3 A/cm2. We attribute this to a depletion region that exists at the AlGaSb barrier and the SLS absorber interface. The device with non-intentionally doped absorption region demonstrated the lowest dark current density (0.3 mA/cm2 at 0.1 V) with a specific detectivity D1 at zero bias equal to 1.2 × 1011 Jones at 77 K. The D1 value decreased to 6 × 1010 cm Hz1/2/W at 150 K. This temperature dependence is significantly different from conventional PIN diodes, in which the D1 decreases by over two orders of magnitude from 77 K to 150 K, making nBn devices a promising alternative for higher operating temperatures.  相似文献   

6.
Single crystals of (Bi1−xPbx)2Sr2Ca2Cu3O10+δ (x = 0 and 0.16) (sizes up to 3 × 2 × 0.1 mm3) have been grown by means of a newly developed “vapour-assisted travelling solvent floating zone” technique (VA-TSFZ). Post-annealing under high pressure of O2 (up to 10 MPa at T = 500 °C) was applied to enhance Tc (up to 111 K) and improve the homogeneity of the crystals (ΔTc  1 K). The structure of both Pb-free and Pb-doped Bi-2223 was refined for the first time from single crystal X-ray diffraction (XRD) data. The unit cell of the average structure is pseudo-tetragonal with a = 5.4210(7), b = 5.4133(6) and c = 37.010(7) Å, and a = 5.395(1), b = 5.413(1) and c = 37.042(11) Å, for the Pb-free and the Pb-doped phase, respectively. An incommensurate modulation in the direction of one of the short cell vectors has been defined (q  0.21 a1), however, the structure can be conveniently described in a supercell with a fivefold volume (a = 27.105(4) Å). With respect to the “non-modulated” structure, one additional oxygen atom for ten initial O was found to be inserted into the BiO layers. The superconducting anisotropy of Bi-2223 was found to be ∼50, from measurements of the lower critical field. The anisotropy of Bi-2223 is significantly reduced compared to that of Bi-2212, and this accounts for the enhanced irreversibility fields in Bi-2223. Furthermore, Bi-2223 has a higher critical current density, and a reduced magnetic relaxation rate compared to Bi-2212, which are both signatures of more effective pinning in Bi-2223 due to its reduced anisotropy.  相似文献   

7.
Bulk single crystals of glycinium maleate have been grown from aqueous solution by slow evaporation method by optimizing the growth parameters within a period of 15 days. From X-ray diffraction analysis, the crystal was found to crystallize in monoclinic structure (space group C2/c) with a = 17.866 Å, b = 5.684 Å, c = 17.408 Å and β = 112.65°. Presence of characteristic functional groups was confirmed in FTIR analysis. UV–Vis spectral analysis has revealed the absence of any high absorbance region between the wavelengths ranging from 300 to 900 nm. The optical band gap was calculated and found to be 3.91 eV. The activation energy for conduction at different frequencies was calculated and found to decrease from 0.54 eV to 0.41 eV as frequency increased from 100 Hz to 2 MHz. The dielectric behavior, conduction mechanism and the optical characterization of the glycinium maleate single crystals are being reported for the first time.  相似文献   

8.
《Solid State Ionics》2006,177(9-10):885-892
Tri block-copolymer poly(iminoethylene)-b-poly(oxyethylene)-b-poly(iminoethylene) with a poly(oxyethylene) central block (PEI-b-PEO-b-PEI) were used as a “dual” matrix for polymer electrolytes having selectivity for hard cations (Li+/PEO) in one phase and for soft cations (Cu2+/PEI) in the other. Conductivity measurements were recorded for 20:1, 12:1 and 8:1 coordinating atom (O or/and N) to cation (Li+, Cu2+) ratios, for each of the three complexes studied: PEI-b-PEO-LiTFSI-b-PEI, PEI-Cu(TFSI)2-b-PEO-b-PEI-Cu(TFSI)2 and PEI-Cu(TFSI)2-b-PEO-LiTFSI-b-PEI-Cu(TFSI)2. For either low (20 °C) or high temperature (80 °C) the highest conductivity was given by the polymer electrolyte based on Cu(TFSI)2 with N/Cu2+ = 20:1 (10 6, respectively 2 × 10 4 S cm 1). In the present paper, the conductivity evolution is discussed in relation with the polymer structure, the type and the concentration of the salt and the thermal behavior of our systems.  相似文献   

9.
High-quality Bi2Te3 microcrystals have been grown by physical vapor transport (PVT) method without using a foreign transport agent. The microcrystals grown under optimal temperature gradient are well facetted and they have dimensions up to ~100 μm. The phase composition of grown crystals has been identified by X-ray single crystal structure analysis in space group R3?m, a=4.3896(2) Å, b=30.5019(10) Å, Z=3 (R=0.0271). Raman microspectrometry has been used to describe the vibration parameters of Bi2Te3 microcrystals. The FWHM parameters obtained for representative Raman lines at 61 cm?1 and 101 cm?1 are as low as 3.5 cm?1 and 4.5 cm?1, respectively.  相似文献   

10.
A novel alternated ultrasonic and electric pulse enhanced electrochemical process was developed and used for investigating its effectiveness on the degradation of p-nitrophenol (PNP) in an aqueous solution. The impacts of pulse mode, pH, cell voltage, supporting electrolyte concentration, ultrasonic power and the initial concentration of PNP on the performance of PNP degradation were evaluated. Possible pathway of PNP degradation in this system was proposed based on the intermediates identified by GC–MS. Experimental results showed that 94.1% of PNP could be removed at 2 h in the dual-pulse ultrasound enhanced electrochemical (dual-pulse US-EC) process at mild operating conditions (i.e., pulse mode of electrochemical pulse time (TEC) = 50 ms and ultrasonic pulse time (TUS) = 100 ms, initial pH of 3.0, cell voltage of 10 V, Na2SO4 concentration of 0.05 M, ultrasonic powder of 48.8 W and initial concentration of PNP of 100 mg/L), compared with 89.0%, 58.9%, 2.4% in simultaneous ultrasound enhanced electrochemical (US-EC) process, pulsed electrochemical (EC) process and pulsed ultrasound (US), respectively. Moreover, energy used in the dual-pulse US-EC process was reduced by 50.4% as compared to the US-EC process. The degradation of PNP in the pulsed EC process, US-EC process and dual-pulse process followed pseudo-first-order kinetics. Therefore, the dual-pulse US-EC process was found to be a more effective technique for the degradation of PNP and would have a promising application in wastewater treatment.  相似文献   

11.
《Current Applied Physics》2010,10(5):1349-1353
Single crystals of semiorganic material calcium dibromide bis(glycine) tetrahydrate were grown from aqueous solution. The crystal belongs to monoclinic system, with a = 13.261(5) Å, b = 6.792(2) Å, c = 15.671(9) Å and β = 91.68(4)°. The presence of the elements in the title compound was confirmed by energy dispersive X-ray analysis. The solubility and metastable zone width were found. The grown crystals were tested by powder XRD, FTIR, Thermo Gravimetric and Differential Thermal Analysis, UV–vis–NIR analysis, dielectrical and mechanical studies. The transmittance of calcium dibromide bis(glycine) tetrahydrate crystal has been used to calculate the refractive index n, the extinction coefficient K and both the real ɛr and imaginary ɛi components of the dielectric constant as functions of wavelength. The optical band gap of calcium dibromide bis(glycine) tetrahydrate is 3.23 eV.  相似文献   

12.
A new iron phosphate, KMgFe(PO4)2 has been synthesized and investigated by X-ray diffraction, Mössbauer spectroscopy and ionic conductivity. This compound crystallizes in the monoclinic space group C2/c with the parameters a = 18.529(7) Å, b = 5.402(3) Å, c = 9.374(9) Å, β = 120.64(5)° and Z = 4. Its original structure can be described as the stacking along the [101] direction of [MgFe(PO4)?2] layers of corner-sharing MO4 (M = 0.5 Fe + 0.5 Mg) and PO4 tetrahedra. The K+ ions are occupying the inter-layer space. The Mössbauer spectroscopy confirms the occurrence of only tetrahedral Fe3+ ions and gives a definitive proof of the disordered character of their distribution. Ionic conductivity results obtained by the impedance spectroscopy technique show that this material is a two-dimensional ionic conductor, with low activation energy, 0.51 eV, that is interpreted on the basis of two-dimensional pathways.  相似文献   

13.
《Solid State Ionics》2006,177(11-12):1083-1090
Poly(vinyl phosphate-b-styrene) (poly(VPP-b-St)) block copolymers were prepared via consecutive telomerization of vinyl acetate (VAc), atom transfer radical polymerization (ATRP) with styrene, saponification, and phosphorylation with phosphorus oxychloride. The resulting block copolymers were characterized by FT-IR and pH titration. Then, the block copolymers were blended with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) to prepare direct methanol fuel cell (DMFC) membrane. The performance of poly(VPP-b-St)/PPO blend membranes was measured in terms of proton conductivity, methanol permeability, thermal and hydrolytic stability. The proton conductivities were in the range of 10 4 to 10 2 S/cm (60 °C, RH = 95%); the methanol permeabilities were in the range of 4.14 × 10 8 to 9.62 × 10 8 cm2/s (25 °C), and quite lower than that of Nafion® 117. Also, the thermal stability of the blend membranes was characterized by TGA, and was stable up to 400 °C; the blend membranes had better hydrolytic stability.  相似文献   

14.
We report on a low-bias InAs–InGaAs quantum-dot (QD) infrared photodetector (QDIP) with operating temperature of 150 K. Longwave-infrared (LWIR) detection at the peak wavelength of 11.7 μm was achieved. Peak specific photodetectivity D1 of 1.7 × 109 and 9.0 × 107 cm Hz1/2/W were obtained at the operating temperature T of 78 K and 150 K, respectively. A large photoresponsivity of 8.3 A/W and high photoconductive gain of 1100 were demonstrated at a low-bias voltage of V = 0.5 V at T = 150 K. The low-bias and high-temperature performance demonstration based on InAs–GaAs material systems indicates that the QDIP technology is promising for LWIR sensing and imaging.  相似文献   

15.
A thin interlayer of samarium doped ceria (SDC) is applied as diffusion barrier between La1 ? xSrxCoyFe1 ? yO3 x = 0.1–0.4, y = 0.2–0.8 (LSCF) cathode and La1.8Dy0.2Mo1.6W0.4O9 (LDMW82) electrolyte to obstruct Mo–Sr diffusion and solid state reaction in the intermediate temperature range of SOFC. We demonstrate the effectiveness of the diffusion barrier through contrasting the clearly defined interfaces of LSCF/SDC/LDMW82 against a rugged growing product layer of LSCF/LDMW82 in 800 °C thermal annealing, and analyze the product composition and the probable new phase. In addition, the measured polarization resistance is considerably lower for the half-cell with a diffusion barrier. Therefore, the electrochemical performance of the LSCF cathode is investigated on the SDC-protected LDMW82. The cell with LSCF (x = 0.4) persistently outperforms the one with x = 0.2 in polarization resistance because of its small low-frequency contribution. The activation energy of polarization resistance is also lower for La0.6Sr0.4CoyFe1 ? yO3 (112–135 kJ/mol), than that for La0.8Sr0.2CoyFe1 ? yO3 (156–164 kJ/mol). La0.6Sr0.4CoyFe1 ? yO3 y = 0.4–0.8 is the proper composition for the cathode interfaced to SDC/LDMW82.  相似文献   

16.
A semiorganic nonlinear optical material L-valine cadmium bromide was synthesized and single crystal grown from an aqueous solution by the method of slow evaporation technique at room temperature. The grown crystal was characterized by Powder X-ray diffraction and FT IR studies. The LVCB crystallizes in monoclinic system with cell parameters a = 10.144(2) Å, b = 5.54(1) Å, c = 12.07(2) Å, β = 109.115(2)° with space group P21. Thermal behavior and stability of crystal were studied using thermogravimetric analyses (TGA) and differential thermal analysis (DTA) techniques. The suitability of this material for NLO application was studied by optical absorption studies and second harmonic generation (SHG) efficiency measurement by Kurtz–Perry powder method.  相似文献   

17.
《Solid State Ionics》2006,177(9-10):863-868
Layered Li(Ni0.5Co0.5)1−yFeyO2 cathodes with 0  y  0.2 have been synthesized by firing the coprecipitated hydroxides of the transition metals and lithium hydroxide at 700 °C and characterized as cathode materials for lithium ion batteries to various cutoff charge voltages (up to 4.5 V). While the y = 0.05 sample shows an improvement in capacity, cyclability, and rate capability, those with y = 0.1 and 0.2 exhibit a decline in electrochemical performance compared to the y = 0 sample. Structural characterization of the chemically delithiated Li1−x(Ni0.5Co0.5)1−yFeyO2 samples indicates that the initial O3 structure is maintained down to a lithium content (1  x)  0.3. For (1  x) < 0.3, while a P3 type phase is formed for the y = 0 sample, an O1 type phase is formed for the y = 0.05, 0.1 and 0.2 samples. Monitoring the average oxidation state of the transition metal ions with lithium contents (1  x) reveals that the system is chemically more stable down to a lower lithium content (1  x)  0.3 compared to the Li1−xCoO2 system. The improved structural and chemical stabilities appear to lead to better cyclability to higher cutoff charge voltages compared to that found before with the LiCoO2 system.  相似文献   

18.
A series of shock recovery experiments up to ∼50 GPa were carried out on three nitrogen-rich materials of a C–N–O amorphous precursor, dicyandiamide and melamine. The powder X-ray diffractions (XRD) of recovered samples show that carbon nitride phases are formed. They are β-C3N4 and a new crystalline phase. The new phase is indexed as a monoclinic cell with a=0.981 nm, b=0.723 nm, c=0.561 nm, β=95.2° and Vcell=0.3966 nm3. Melamine was very stable and did not decompose up to ∼37 GPa. This new phase is considered to form during the adiabatic release process with an extremely high quenching rate (∼109 K/s) and shock compression may provide a novel synthesis route for various C–N phases from appropriate organic materials.  相似文献   

19.
《Current Applied Physics》2009,9(5):1160-1164
Multi-metallic Prussian blue compound Ni1.125Co0.375[Fe(CN)6] · 6.8H2O has been synthesized. The Mössbauer spectroscopy at room temperature and IR spectra study revealed that the metal ions are bonded through cyanide ligand and the presence of low spin FeIII(S = 1/2) and high spin FeIII(S = 5/2) ions, as showed in these structure: FeIII(S = 1/2)-CN-(CoII/NiII)(96%) and FeIII(S = 5/2)-NC-(CoII/NiII) (4%). The Curie constant of C = 3.00 cm3 K mol−1 and Weiss paramagnetic Curie temperature of θ = 16.43 K were observed in fitting according to Curie–Weiss law. These results indicate that there existed a ferromagnetic exchange interaction in the complexes. The observed value of coercive field (Hc) and remanent magnetization (Mr) at 4 K for the compound are 497 Oe and 1.03 . The presence of spin-glass behaviours in the compound is ascribed mainly to domain mobility or domain growth under different cooling conditions.  相似文献   

20.
The nuclear and magnetic structure and the magnetic properties of the polycrystalline double perovskite Sr2MnWO6 have been studied. Rietveld analysis of neutron powder diffraction (NPD) data at T=295 K shows that the sample is tetragonal (space group P42/n, a=8.0119(4) Å, c=8.0141(8) Å). Some additional magnetic diffraction peaks were found in the NPD pattern at 10 K, which can be accounted for by antiferromagnetic ordering of spins at the Mn sites. The magnetic unit cell is doubled in all three unit axes directions (a=b=15.9984(8) Å, c=16.012(2) Å) and the manganese moments are coupled antiferromagnetically along the unit cell axes. The total magnetic moment of Mn2+ is found to be 2.27(7) μB. The antiferromagnetic behaviour was confirmed from magnetisation measurements. The transition from a paramagnetic to an antiferromagnetic state takes place at 13.0±0.1 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号