首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 549 毫秒
1.
2.
Combinatorics is an area of mathematics with accessible, rich problems and applications in a variety of fields. Combinatorial proof is an important topic within combinatorics that has received relatively little attention within the mathematics education community, and there is much to investigate about how students reason about and engage with combinatorial proof. In this paper, we use Harel and Sowder’s (1998) proof schemes to investigate ways that students may characterize combinatorial proofs as different from other types of proof. We gave five upper-division mathematics students combinatorial-proof tasks and asked them to reflect on their activity and combinatorial proof more generally. We found that the students used several of Harel and Sowder’s proof schemes to characterize combinatorial proof, and we discuss whether and how other proof schemes may emerge for students engaging in combinatorial proof. We conclude by discussing implications and avenues for future research.  相似文献   

3.
This paper is a case study of the teaching of an undergraduate abstract algebra course with a particular focus on the manner in which the students presented proofs and the class engaged in a subsequent discussion of those proofs that included validating the work. This study describes norms for classroom work that include a set of norms that the presenter of a proof was responsible for enacting, including only using previously agreed upon results, as well as a separate set that the audience was to enact related to developing their understanding of the presented proof and validating the work. The study suggests that the students developed a sense of communal and individual responsibility for contributing to growing the body of mathematical knowledge known by the class, with an implied responsibility for knowing the already developed mathematics. Moreover, the behaviors that norms prompted the students to engage were those that literature suggests leads to increased comprehension of proofs.  相似文献   

4.
Authority becomes shared in mathematics classrooms when perceived sources of valid mathematical knowledge extend beyond the teacher/textbook and allow both students and disciplinary modes of reasoning to hold authority. The goal of this research is to better understand classroom situations that are intended to facilitate shared authority over proof, namely small-group episodes where students are granted authority (Gerson & Bateman, 2010) to co-construct mathematical proofs. We sought to better understand the content of undergraduate students’ attention during group proving and the sources of legitimacy for students. Using Stylianides’ (2007) definition of proof as an analytical frame, we found that student discourse focused primarily upon the mode of argumentation, followed by the mode of argument representation, and then the set of accepted statements. We identified four themes with respect to the sources of authority students relied upon in their group proving: (1) the course rubric, (2) peers’ confidence, (3) form and symbols, and (4) logical structure. Implications for research and practice are presented.  相似文献   

5.
The research team of The Linear Algebra Project developed and implemented a curriculum and a pedagogy for parallel courses in (a) linear algebra and (b) learning theory as applied to the study of mathematics with an emphasis on linear algebra. The purpose of the ongoing research, partially funded by the National Science Foundation, is to investigate how the parallel study of learning theories and advanced mathematics influences the development of thinking of individuals in both domains. The researchers found that the particular synergy afforded by the parallel study of math and learning theory promoted, in some students, a rich understanding of both domains and that had a mutually reinforcing effect. Furthermore, there is evidence that the deeper insights will contribute to more effective instruction by those who become high school math teachers and, consequently, better learning by their students. The courses developed were appropriate for mathematics majors, pre-service secondary mathematics teachers, and practicing mathematics teachers. The learning seminar focused most heavily on constructivist theories, although it also examined socio-cultural and historical perspectives. A particular theory, Action-Process-Object-Schema (APOS) [10], was emphasized and examined through the lens of studying linear algebra. APOS has been used in a variety of studies focusing on student understanding of undergraduate mathematics. The linear algebra courses include the standard set of undergraduate topics. This paper reports the results of the learning theory seminar and its effects on students who were simultaneously enrolled in linear algebra and students who had previously completed linear algebra and outlines how prior research has influenced the future direction of the project.  相似文献   

6.
Proof and proving are important components of school mathematics and have multiple functions in mathematical practice. Among these functions of proof, this paper focuses on the discovery function that refers to invention of a new statement or conjecture by reflecting on or utilizing a constructed proof. Based on two cases in which eighth and ninth graders engaged in proofs and refutations, we demonstrate that facing a counterexample of a primitive statement can become a starting point of students’ activity for discovery, and that a proof of the primitive statement can function as a useful tool for inventing a new conjecture that holds for the counterexample. An implication for developing tasks by which students can experience this discovery function is mentioned.  相似文献   

7.
8.
The purpose of the research was to improve the effectiveness of instruction in constructivist pedagogy in a college elementary mathematics education course through intentional integration of instruction in mathematics content. Instructors of this course previously used examples involving mathematics content on an ad hoc basis in an attempt to illuminate desirable constructivist pedagogy but discovered that they were ineffective because students experienced difficulty with the mathematics content itself. An instrument was created to assess students' mathematics content knowledge required to understand these examples. Based on the outcome of the assessment, intentional instruction of mathematics content using anchoring examples was integrated with pedagogical instruction. Results showed significant improvement in mathematics content knowledge and confidence in that knowledge with a better understanding of constructivist pedagogy.  相似文献   

9.
In this paper we consider proving to be the activity in search for a proof, whereby proof is the final product of this activity that meets certain criteria. Although there has been considerable research attention on the functions of proof (e.g., explanation), there has been less explicit attention in the literature on those same functions arising in the proving process. Our aim is to identify conditions for proving by mathematical induction to be explanatory for the prover. To identify such conditions, we analyze videos of undergraduate mathematics students working on specially designed problems. Specifically, we examine the role played by: the problem formulation, students’ experience with the utility of examples in proving, and students’ ability to recognize and apply mathematical induction as an appropriate method in their explorations. We conclude that particular combinations of these aspects make it more likely that proving by induction will be explanatory for the prover.  相似文献   

10.
11.
While proofs are central to university level mathematics courses, research indicates that some students may complete their degrees with an incomplete picture of what constitutes a proof and how proofs are developed. The paper sets out to review what is known of the student experience of mathematical proof at university level. In particular, some evidence is presented of the conceptions of mathematical proof that recent mathematics graduates bring to their postgraduate course to teach high school mathematics. Such evidence suggests that while the least well-qualified graduates may have the poorest grasp of mathematical proof, the most highly qualified may not necessarily have the richest form of subject matter knowledge needed for the most effective teaching. Some indication of the likely causes of this incomplete student perspective on proof are presented.  相似文献   

12.
13.
One goal of an undergraduate education in mathematics is to help students develop a productive disposition towards mathematics. A way of conceiving of this is as helping mathematical novices transition to more expert-like perceptions of mathematics. This conceptualization creates a need for a way to characterize students' perceptions of mathematics in authentic educational settings. This article presents a survey, the Mathematics Attitudes and Perceptions Survey (MAPS), designed to address this need. We present the development of the MAPS instrument and its validation on a large (N = 3411) set of student data. Results from various MAPS implementations corroborate results from analogous instruments in other STEM disciplines. We present these results and highlight some in particular: MAPS scores correlate with course grades; students tend to move away from expert-like orientations over a semester or year of taking a mathematics course; and interactive-engagement type lectures have less of a negative impact, but no positive impact, on students' overall orientations than traditional lecturing. We include the MAPS instrument in this article and suggest ways in which it may deepen our understanding of undergraduate mathematics education.  相似文献   

14.
Mathematics experts often choose appropriate procedures to produce an efficient or elegant solution to a mathematical task. This flexible procedural knowledge distinguishes novice and expert procedural performances. This article reports on an intervention intended to aid the development of undergraduate calculus students’ flexible use of procedures. Two sections of the same course were randomly assigned to treatment and control conditions. Treatment students completed an assignment on which they resolved derivative-finding problems with alternative methods and compared the two resulting solutions. Control students were assigned a list of functions to differentiate. On the post-intervention test, treatment students were more likely to use a variety of solution methods without prompting than the control. Moreover, the set of treatment section solutions were closer to those of a group of mathematics experts. This study presents evidence that not only is flexible procedural knowledge a key skill in tertiary mathematics, it can be taught.  相似文献   

15.
It is widely known that students often treat examples that satisfy a certain universal statement as sufficient for showing that the statement is true without recognizing the conventional need for a general proof. Our study focuses on special cases in which examples satisfy certain universal statements, either true or false in a special type of mathematical task, which we term “Is this a coincidence?”. In each task of this type, a geometrical example was chosen carefully in a way that appears to illustrate a more general and potentially surprising phenomenon, which can be seen as a conjecture. In this paper, we articulate some design principles underlying the choice of examples for this type of task, and examine how such tasks may trigger a need for proof. Our findings point to two different kinds of ways of dealing with the task. One is characterized by a doubtful disposition regarding the generality of the observed phenomenon. The other kind of response was overconfidence in the conjecture even when it was false. In both cases, a need for “proof” was evoked; however, this need did not necessarily lead to a valid proof. We used this type of task with two different groups: capable high school students and experienced secondary mathematics teachers. The findings were similar in both groups.  相似文献   

16.
This is a study of mathematics students working in small groups. Our research methodology allows us to examine how individual ideas develop in a social context. The research perspective used in this study is based on a co-constructive view of learning. Groups of three or four undergraduate mathematics majors, with prior experience writing mathematical proofs together, were asked to prove three statements. Computer software, such as Geometers Sketchpad, was available. Group work sessions were videotaped. Later, individuals viewed segments of the group video and were asked to reflect on group activities. Students in some groups did not share a common conception of proof, which seemed to hamper their collaboration. We observed interactions that fit with the co-constructive theory, with bidirectional interactions that shaped both group and individual conceptions of the tasks. These changes in understanding may result from parallel and successive internalization and externalization of ideas by individuals in a social context.  相似文献   

17.
Meaningful learning of formal mathematics in regular classrooms remains a problem in mathematics education. Research shows that instructional approaches in which students work collaboratively on tasks that are tailored to problem solving and reflection can improve students’ learning in experimental classrooms. However, these sequences involve often carefully constructed reinvention route, which do not fit the needs of teachers and students working from conventional curriculum materials. To help to narrow this gap, we developed an intervention—‘shift problem lessons’. The aim of this article is to discuss the design of shift problems and to analyze learning processes occurring when students are working on the tasks. Specifically, we discuss three paradigmatic episodes based on data from a teaching experiment in geometrical proof. The episodes show that is possible to create a micro-learning ecology where regular students are seriously involved in mathematical discussions, ground their mathematical understanding and strengthen their relational framework.  相似文献   

18.
This article describes a study of backgrounds, beliefs, and attitudes of teachers about proofs. Thirty preservice elementary teachers enrolled in a mathematics content course and 21 secondary mathematics teachers in an abstract algebra course were surveyed. The study explored four issues: preservice teachers' experiences/exposure to proof, their beliefs about what constitutes a proof and the role of proof in mathematics, and their beliefs about when proof should be introduced in grades K-12. Results of the survey are described as a means for discussing the backgrounds and beliefs future teachers hold with regard to teaching proofs in their own classrooms. Finally, a short collection of sample explorations and questions, which could be used to encourage the thinking and writing of proofs in grades K-12, is provided. One of these questions was posed to 215 secondary students; examples of their reasoning and a discussion of the various techniques employed by the students are included.  相似文献   

19.
Many K–8 preservice teachers have not experienced learning mathematics in a standards‐based classroom. This article describes a mathematics content course designed to provide preservice teachers experiences in learning mathematics that will help build a solid foundation for a standards‐based methods course. The content course focuses on developing preservice teachers' mathematical knowledge, as well as helping them realize what it means to learn mathematics that is taught using the pedagogy in the Principles and Standards for School Mathematics ( National Council of Teachers of Mathematics, 2000 ). Furthermore, findings are presented from a study on this course that describe students' pre‐ and postcourse beliefs, attitudes, and perceptions of what it means to learn and teach mathematics. These findings provide evidence that the students in the study are beginning to understand what is meant by a standards‐based classroom. Data were collected from surveys and interviews. Quotes from the students who aspire to be elementary teachers are used throughout the article to support the points.  相似文献   

20.
The paper examines the roles and purposes of proof mentioned by university research faculty when reflecting on their own teaching and teaching at their institutions. Interview responses from 14 research mathematicians and statisticians who also teach are reported. The results suggest there is a great deal of variation in the role and purpose of proof in and among mathematics courses and that factors such as the course title, audience, and instructor influence this variation. The results also suggest that, for this diverse group, learning how to prove theorems is the most prominent role of proof in upper division undergraduate mathematics courses and that this training is considered preparation for graduate mathematics studies. Absent were responses discussing proof's role in preparing K-12 mathematics teachers. Implications for a proof and proving landscape for school mathematics are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号