首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We apply the phase field crystal method for nonequilibrium patterning to stochastic systems with an external source in which transient dynamics is essential. Considering a prototype model for a one-component periodic system subjected to external influence kind of irradiation we study properties of pattern selection processes and external noise induced pattern-forming transitions. These processes are examined by means of the structure function dynamics analysis. Nonequilibrium pattern-forming transitions are analyzed numerically.  相似文献   

2.
We study a change in mechanical properties of binary systems subjected to irradiation influence described by ballistic flux of atomic mixing having regular and stochastic contributions. By using numerical modeling based on the phase field approach we study dynamics of deformation fields in a previously irradiated system and in the binary system deformed during irradiation. An influence of both deterministic and stochastic components of ballistic flux onto both yield strength and ultimate strength is studied. We have found that degradation of mechanical properties relates to the formation of percolating clusters of shear bands. Considering a hardening coefficient we analyze stages of plastic deformation of both initially irradiated alloy and alloy subjected to sustained irradiation. Stability of binary alloy under mechanical loading in the form of shear strain with a constant rate and cyclic deformation is discussed.  相似文献   

3.
We study the influence of thermal fluctuations on the dewetting dynamics of thin liquid films. Starting from the incompressible Navier-Stokes equations with thermal noise, we derive a fourth-order degenerate parabolic stochastic partial differential equation which includes a conservative, multiplicative noise term—the stochastic thin-film equation. Technically, we rely on a long-wave-approximation and Fokker–Planck-type arguments. We formulate a discretization method and give first numerical evidence for our conjecture that thermal fluctuations are capable of accelerating film rupture and that discrepancies with respect to time-scales between physical experiments and deterministic numerical simulations can be resolved by taking noise effects into account.  相似文献   

4.
We consider spatial organization of point defects in the generalized model of defects formation in elastic medium by taking into account defects production by irradiation influence and stochastic contribution for defects dynamics satisfying the fluctuation dissipation relation. We have found that depending on initial conditions and control parameters reduced to defects generation rate caused by irradiation, temperature and the stochastic source intensity different stationary structures of defects can be organized during the system evolution. Studying phase transitions between phases characterized by low- and high defect densities in stochastic system we have shown that such phenomena are described by mechanisms inherent in entropy-driven phase transitions. Stationary patterns are studied by amplitude analysis of unstable slow modes.  相似文献   

5.
Slow dynamics of density fluctuations near the colloidal glass transition is discussed from a new viewpoint by numerically solving a nonlinear stochastic diffusion equation for the density fluctuations recently proposed by one of the present authors (MT). The effects of spatial heterogeneities on the dynamics of density fluctuations are then investigated in an equilibrium system. The spatial heterogeneities are generated by the nonlinear density fluctuations, while in a nonequilibrium system they are described by a nonlinear deterministic equation for the average number density. The dynamics of equilibrium density fluctuations is thus shown to be quite different from that of nonequilibrium ones, leading to a logarithmic decay followed by less distinct α- and β-relaxation processes. Received 9 March 2002 and Received in final form 19 September 2002  相似文献   

6.
Experimental investigation of fluctuation dynamics in critical and transitional modes of heat mass exchange shows existence of irregular high-energy pulsations with power spectrum inversely proportional to the frequency—so called 1/f spectrum. Such regimes are characterized by the fact that an essential part of the pulsations energy is connected with very slow processes and mean that large high-energy bursts are possible in the system. Another characteristic feature of such regimes is scale invariance of the fluctuations distribution function. According to the theory, the 1/f fluctuations can emerge in physical systems due to simultaneous phase transitions in presence of sufficiently intensive white noise. This paper is devoted to detailed investigation of relaxation processes at steadying of stationary stochastic process in non-equilibrium phase transitions in system of two nonlinear stochastic differential equation. Such an information reveals statistical patterns of particular large-scale low-frequency bursts. Discontinuous “forgetting” of the initial conditions takes place. It is shown by numerical methods that distributions of duration and maximal values of the low-frequency extreme bursts have the power-like form. Experimental investigation results of statistical characteristics of fluctuation processes at ultrasonic cavitation and flash boiling of overheated water jets are presented. Results of the experiments carried out fit conclusions of the theoretical model for interacting heterogeneous phase transitions.  相似文献   

7.
We study processes of phase decomposition and patterning in a model of a binary alloy system subjected to sustained irradiation. We exploit the reaction rate theory and generalize the Darken approach of vacancy diffusion to describe generation, recombination, annihilation and spatial interaction of point defects. It is shown that an increase in the defect production rate phase, decomposition processes are replaced by disordering and patterning with vacancy clusters' formation. At elevated damage rates, both phase separation and patterning are accompanied by pattern selection processes. In the framework of numerical simulations, dynamics of phase decomposition and vacancy clusters formation is studied in detail. A change in the morphology of vacancy clusters during irradiation and their statistical properties are discussed.  相似文献   

8.
We study an influence network of voters subjected to correlated disordered external perturbations, and solve the dynamical equations exactly for fully connected networks. The model has a critical phase transition between disordered unimodal and ordered bimodal distribution states, characterized by an increase in the vote-share variability of the equilibrium distributions. The fluctuations (variance and correlations) in the external perturbations are shown to reduce the impact of the external influence by increasing the critical threshold needed for the bimodal distribution of opinions to appear. The external fluctuations also have the surprising effect of driving voters towards biased opinions. Furthermore, the first and second moments of the external perturbations are shown to affect the first and second moments of the vote-share distribution. This is shown analytically in the mean field limit, and confirmed numerically for fully connected networks and other network topologies. Studying the dynamic response of complex systems to disordered external perturbations could help us understand the dynamics of a wide variety of networked systems, from social networks and financial markets to amorphous magnetic spins and population genetics.  相似文献   

9.
10.
We study pattern formation in periodic systems with conserved dynamics driven by both thermally sustained flux and external (athermal) flux. Assuming the stochastic nature of each kind of flux we discuss noise induced patterning with competing stochastic dynamics in the framework of the modulated phase field method. Analytical results obtained within the mean field theory are compared with computer simulations.  相似文献   

11.
We simulate atomic ballistic transport in a standing-wave laser field in the framework of a Monte Carlo stochastic wavefunction approach in which the coherent Hamiltonian evolution is interrupted at random times by spontaneous emission events. It is shown in numerical experiments and confirmed analytically that the character of spatial and momentum diffusion of spontaneously emitting atoms changes abruptly in the atom-laser detuning regime where the deterministic Hamiltonian dynamics has been shown to be chaotic. Thus, we find a manifestation of underlying Hamiltonian chaos in the diffusive-like center-of-mass motion which can be observed in real experiments. The article is published in the original.  相似文献   

12.
We present a stochastic theory for the nonequilibriurn dynamics of charges moving in a quantum scalar field based on the worldline influence functional and the close-time-path (CTP or in-in) coarse-grained effective action method. We summarize (1) the steps leading to a derivation of a modified Abraham-Lorentz-Dirac equation whose solutions describe a causal semiclassical theory free of runaway solutions and without pre-acceleration patholigies, and (2) the transformation to a stochastic effective action, which generates Abraham-Lorentz-Dirac-Langevin equations depicting the fluctuations of a particle’s worldline around its semiclassical trajectory. We point out the misconceptions in trying to directly relate radiation reaction to vacuum fluctuations, and discuss how, in the framework that we have developed, an array of phenomena, from classical radiation and radiation reaction to the Unruh effect, are interrelated to each other as manifestations at the classical, stochastic and quantum levels. Using this method we give a derivation of the Unruh effect for the spacetime worldline coordinates of an accelerating charge. Our stochastic particle-field model, which was inspired by earlier work in cosmological backreaction, can be used as an analog to the black hole backreaction problem describing the stochastic dynamics of a black hole event horizon.  相似文献   

13.
We study the self-organization of vacancy clusters in irradiated materials under reactor and accelerator conditions. Using a continuum stochastic model we take into account dynamics of point defects and their sinks with elastic interactions of vacancies. Dynamics of vacancy clusters formation is studied analytically and numerically. We have shown a difference in patterning dynamics at irradiation under reactor and accelerator conditions. The external noise influence related to fluctuation in a defect production rate is studied in detail. Applying our approach to pure nickel irradiated under different conditions we have shown that vacancy clusters having a linear size ~eq 6 nm can arrange in a statistical periodic structure with nano-meter range. We have found that the linear size of vacancy clusters at accelerator conditions decreases down to 20%, whereas a period of vacancy clusters reduces to 6.5%.  相似文献   

14.
Based on a stochastic, nonlinear, open biochemical reaction system perspective, we present an analytical theory for cellular biochemical processes. The chemical master equation (CME) approach provides a unifying mathematical framework for cellular modeling. We apply this theory to both self-regulating gene networks and phosphorylation-dephosphorylation signaling modules with feedbacks. Two types of bistability are illustrated in mesoscopic biochemical systems: one that has a macroscopic, deterministic counterpart and another that does not. In certain cases, the latter stochastic bistability is shown to be a “ghost” of the extinction phenomenon. We argue the thermal fluctuations inherent in molecular processes do not disappear in mesoscopic cell-sized nonlinear systems; rather they manifest themselves as isogenetic variations on a different time scale. Isogenetic biochemical variations in terms of the stochastic attractors can have extremely long lifetime. Transitions among discrete stochastic attractors spend most of the time in “waiting”, exhibit punctuated equilibria. It can be naturally passed to “daughter cells” via a simple growth and division process. The CME system follows a set of nonequilibrium thermodynamic laws that include non-increasing free energy F(t) with external energy drive Q hk ≥0, and total entropy production rate e p =−dF/dt+Q hk ≥0. In the thermodynamic limit, with a system’s size being infinitely large, the nonlinear bistability in the CME exhibits many of the characteristics of macroscopic equilibrium phase transition.  相似文献   

15.
We investigate the transport properties of open quantum chaotic systems in the semiclassical limit. We show how the transmission spectrum, the conductance fluctuations, and their correlations are influenced by the underlying chaotic classical dynamics, and result from the separation of the quantum phase space into a stochastic and a deterministic phase. Consequently, sample-to-sample conductance fluctuations lose their universality, while the persistence of a finite stochastic phase protects the universality of conductance fluctuations under variation of a quantum parameter.  相似文献   

16.
We study properties of voids growth dynamics in a stochastic system of point defects insolids under nonequilibrium conditions (sustained irradiation). It is shown thatfluctuations of defect production rate (external noise) increase the critical void radiuscomparing to a deterministic system. An automodel regime of void size growth in astochastic system is studied in detail. Considering a homogeneous system, it is found thatexternal noise does not change the universality of the void size distribution function;the mean void size evolves according to classical nucleation theory. The noise increasesthe mean void size and spreads the void size distribution. Studying dynamics of spatiallyextended systems it was shown that vacancies remaining in a matrix phase are able toorganize into vacancy enriched domains due to an instability caused by an elastic latticedeformation. It is shown that dynamics of voids growth is defined by void sinks strengthwith void size growth exponent varying from 1/3 up to 1/2.  相似文献   

17.
 A class of SOS interface models which can be seen as simplified stochastic Ising model interfaces is studied. In the absence of an external field the long-time fluctuations of the interface are shown to behave as Brownian motion with diffusion coefficient given by a Green-Kubo formula. When a small external field h is applied, it is shown that the shape of the interface converges exponentially fast to a stationary distribution and the interface moves with an asymptotic velocity v(h). The mobility is shown to exist and to satisfy the Einstein relation: , where β is the inverse temperature. Received: 16 April 2002 / Accepted: 3 July 2002 Published online: 22 November 2002 RID="*" ID="*" Work partially supported by the N.S.F. through grants DMS-0071766 and DMS-0074152.  相似文献   

18.
Polymer translocation through the nanochannel is studied by means of a Monte Carlo approach, in the presence of a static or oscillating external electric voltage. The polymer is described as a chain molecule according to the two-dimensional “bond fluctuation model”. It moves through a piecewise linear channel, which mimics a nanopore in a biological membrane. The monomers of the chain interact with the walls of the channel, modelled as a reflecting barrier. We analyze the polymer dynamics, concentrating on the translocation time through the channel, when an external electric field is applied. By introducing a source of coloured noise, we analyze the effect of correlated random fluctuations on the polymer translocation dynamics.  相似文献   

19.
A semiclassical theory of a dissipative Henon—Heiles system is proposed. Based on -scaling of an equation for the evolution of the Wigner quasiprobability distribution function in the presence of dissipation and thermal diffusion, we derive a semiclassical equation for quantum fluctuations, governed by the dissipation and the curvature of the classical potential. We show how the initial quantum noise gets amplified by classical chaotic diffusion, which is expressible in terms of a correlation of stochastic fluctuations of the curvature of the potential due to classical chaos, and ultimately settles down to equilibrium under the influence of dissipation. We also establish that there exists a critical limit to the expansion of phase space. The limit is set by chaotic diffusion and dissipation. Our semiclassical analysis is corroborated by numerical simulation of a quantum operator master equation.  相似文献   

20.
 An investigation of the behaviour of amplitude and frequency noise of radiation of an active interferometer in the regime of amplified optical bistability is presented. The phenomenon of non-amplification of external signal noise at sharp amplification of the external signal is established. The impact of strong amplitude fluctuations is studied. Our results have shown that the active interferometer allows an effective separation of the valid signal from the amplitude noise. The spectral density of a fluctuation of the field frequency in the active interferometer is shown to fall sharply in comparison with the “quantum limit”. The linewidth of radiation is determined by the spectral density at zero frequency and is equal to the natural linewidth of the external signal. The influence of quantum noise of the amplifying and absorbing media of the active interferometer is discussed. Received: 26 January 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号