首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of adsorbed Na on the surface conductivity, Δσ, and surface recombination velocity, S, of a clean (114)Ge surface is studied. The surface conductivity is a complicated function of the surface Na concentration, NNa; at NNa ≈ 1.5 × 1013 atoms/cm2, it has a minimum; at ca. (3–5) × 1014atoms/cm2, it has a maximum. For a monolayer coverage (ca. 7.2 × 1014atoms/cm2) the values of Δσ are not much different from those of a clean Ge surface. The surface recombination velocity is a three-valued function of the surface potential, US (calculated from the Δσ values), depending on the Na overlayer coverage and heat treatment of the sample. Three different surface structures (LEED data) were found to correspond to the three S versus US curves reported here. Thermal desorption studies show that Na is desorbed in a wide temperature interval. Two peaks have been isolated, studied and discussed. At low coverages a single peak is found to exist, which obeys the first-order desorption kinetics, with a desorption energy of (52 ± 3)kcal/mol. This peak is attributed to the surface defects. For coverages close to14 monolayer a new peak was observed in the spectrum. The desorption energy of this binding state exceeds that of all the other states. When the overlayer coverage is increased, this peak is shifted to higher temperatures, as predicted for a half-order desorption kinetics. By comparing also with LEED data, it may be concluded that this most tightly bound sodium has formed on the Ge(111) surface patches of an ordered structure in which one Na atom is bonded to three Ge atoms.  相似文献   

2.
An extensive photoemission and LEED study of K and CO+K on Ru(001) has been carried out. In this paper the LEED and some XPS results together with TPD and HREELS data are presented in terms of adsorption, desorption. and structural properties, and their compatibility is discussed. Potassium forms (2 × 2) and (3 × 3)R30° overlayers below and near monolayer coverage, and multilayer bonding and desorption is similar to that of bulk K. The initial sticking coefficients for CO adsorption on K predosed surfaces are correlated with the initial K structure, and s0 and CO saturation coverages decrease with increasing K coverage. Two well-characterized mixed CO+K layers have been found which are correlated with predosed (2 × 2) K and (3 × 3)R30° K. They have CO to K ratios of 3:2 and 1:1, and lead to LEED patterns with (2 × 2) and (3 × 3) symmetry, respectively. The molecule is believed to be sp2 rehybridized under the influence of coadsorbed K, leading to stronger CO-Ru and weaker C-O bonds as indicated by the TPD and HREELS results, and to stand upright in essentially twofold bridges.  相似文献   

3.
The chemisorption of CO on the clean, unreconstructed Pt(100)-1 × 1 surface was investigated by LEED and XPS. Three LEED patterns, c(2 × 2), (√2 × 3√2) R45° and c(4 × 2), were observed with increasing CO exposure and structure models corresponding to these LEED patterns were proposed. The absolute coverage of CO was determined by combining the O(1s) XPS data with coverage information derived from LEED. The maximum CO coverage thus obtained was θ = 0.75 and the initial sticking coefficient was determined to be s0 = 0.6. This coverage calibration can also be utilized for other oxygen containing molecules by comparing the corresponding O(1s)it peak intensities.  相似文献   

4.
Adlayers of oxygen, carbon, and sulfur on W(211) have been characterized by LEED, AES, TPD, and CO adsorption. Oxygen initially adsorbs on the W(211) surface forming p(2 × 1)O and p(1 × 1)O structures. Atomic oxygen is the only desorption product from these surfaces. This initial adsorption selectively inhibits CO dissociation in the CO(β1) state. Increased oxidation leads to a p(1 × 1)O structure which totally inhibits CO dissociation. Volatile metal oxides desorb from the p(1 × 1)O surface at 1850 K. Oxidation of W(211) at 1200 K leads to reconstruction of the surface and formation of p(1 × n)O LEED patterns, 3 ? n ? 7. The reconstructed surface also inhibits CO dissociation and volatile metal oxides are observed to desorb at 1700 K, as well as at 1850 K. Carburization of the W(211) surface below 1000 K produced no ordered structures. Above 1000 K carburization produces a c(6 × 4)C which is suggested to result from a hexagonal tungsten carbide overlayer. CO dissociation is inhibited on the W(211)?c(6×4)C surface. Sulfur initially orders into a c(2 × 2)S structure on W(211). Increased coverage leads to a c(2×6)S structure and then a complex structure. Adsorbed sulfur reduces CO dissociation on W(211), but even at the highest sulfur coverages CO dissociation was observed. Sulfur was found to desorb as atomic S at 1850 K for sulfur coverages less than 76 monolayers. At higher sulfur coverages the dimer, S2, was observed to desorb at 1700 K in addition to atomic sulfur desorption.  相似文献   

5.
The adsorption, desorption, surface structural chemistry, and electron impact properties of CO on Rh(110) have been studied by LEED, Auger spectroscopy, thermal desorption, and surface potential measurements. At 300 K, CO adsorbs into a single chemisorbed state whose desorption energy (Ed) is ~130kJmol-1. The initial sticking probability is unity, and at saturation coverage a (2 × 1)plgl ordered phase reaches its maximum degree of perfection, thus demonstrating that this CO structure is common to the (110) faces of all the cubic platinum group metals. The saturated adlayer corresponds to θ = 1 and shows a surface potential of Δ? = +0.97 V. Under electron impact, desorption and dissociation of CO occur with about equal probability, the relevant cross sections being ~10-22 m2 in each case. Slow thermal dissociation of CO occurs at high temperature and pressure, leaving a deposit of C and O atoms on the surface. The thermal, electron impact, and Δ? properties of Rh(110)CO resemble those of Ni(110)CO rather closely, and are very different from those of Pt(110)CO. Surface carbon is shown to inhibit CO chemisorption, whereas surface oxygen appears to lead to the formation of a new more tightly bound form of CO with a considerably enhanced desorption energy (Ed ~ 183 kJmol-1). Similar oxygen-induced high temperature CO states have been reported recently on Co(0001) and Ru(101̄1).  相似文献   

6.
The adsorbate induced (1×2) (1×1) (2×1)p1g1 phase transitions on Pt(110) have been studied by Rutherford backscattering (RBS), nuclear microanalysis (NMA), LEED and thermal desorption spectroscopy. RBS data indicate that any displacement of the surface atoms from their expected bulk-like lattice sites in the (1×2) phase is ? 0.002 nm laterally and ? 0.007 nm vertically. This contraint eliminates models for the reconstruction which involve significant lateral displacements (e.g., the paired-atom or hexagonal overlayer models). The RBS data are consistent with both the rumpled model with up/down displacements not exceeding ~0.007 nm and the missing row model with an unrelaxed surface in which the out-of-plane vibrational amplitude is slightly enhanced. A c(8×4) phase, produced by CO (or NO) exposure at T?250 K, has also been characterized by RBS which demonstrated that 0.92×1015 Pt cm?2 move on average by ~0.017 nm laterally out-of-registry with the bulk upon formation of this phase. The values of the saturation adsorbate coverages at T?200K were determined by NMA to be 0.92 ± 0.05×1015, 1.0 ± 0.06×1015 and 1.07 ± 0.10×1015 CO molecules, NO molecules and D atoms, respectively, per cm2. The value of the saturation coverage by CO (θ = 1.0) supports recent models of the (2×1)p1g1 overlayer. The isosteric heat of adsorption of CO is 160 ± 15 kJ mol?1 in the range 0.2?θ?0.5.  相似文献   

7.
S.B. Lee  M. Weiss  G. Ertl 《Surface science》1981,108(2):357-367
Adsorption of K on Fe(110), (100) and (111) surfaces was studied by means of LEED, AES, thermal desorption and work function measurements. The monolayer capacity is about 5.5 × 1014 K-atoms/cm2 in all three cases. With Fe(111) an ordered 3 × 3 overlayer was found at fairly low coverages. The work function decreases to a minimum and the initial dipole moments were determined to μ0 = 7.0 Debye for Fe(110), μ0 = 4.4 Debye for K/Fe(100) and μ0 = 3.9 Debye for K/Fe(111). The heat of adsorption decreases from its initial value (Fe(110): 57; Fe(100): 54; Fe(111): 52 kcal/mole) continuously with increasing coverage which parallels the continuous decrease of the dipole moment of the adsorbate complex.  相似文献   

8.
9.
The molecular chemisorption of N2 on the reconstructed Ir(110)-(1 × 2) surface has been studied with thermal desorption mass spectrometry, XPS, UPS, AES, LEED and the co-adsorption of N2 with hydrogen. Photoelectron spectroscopy shows molecular levels of N2 at 8.0 (5σ + 1π) and 11.8 (4σ) eV in the valence band and at 399.2 eV with a satellite at 404.2 eV in the N(1s) region, where the binding energies are referenced to the Ir Fermi level. The kinetics of adsorption and desorption show that both precursor kinetics and interadsorbate interactions are important for this chemisorption system. Adsorption occurs with a constant probability of adsorption of unity up to saturation coverage (4.8 × 1014 cm?2), and the thermal desorption spectra give rise to two peaks. The activation energy for desorption varies between 8.5 and 6.0 kcal mole?1 at low and high coverages, respectively. Results of the co-adsorption of N2 and hydrogen indicate that adsorbed N2 resides in the missing-row troughs on the reconstructed surface. Nitrogen is displaced by hydrogen, and the most tightly bound state of hydrogen blocks virtually all N2 adsorption. A p1g1(2 × 2) LEED pattern is associated with a saturated overlayer of adsorbed N2 on Ir(110)-(1 × 2).  相似文献   

10.
The adsorption of potassium and the coadsorption of potassium and oxygen on the Pt(111) and stepped Pt(755) crystal surfaces were studied by AES, LEED, and TDS. Pure potassium adlayers were found by LEED to be hexagonally ordered on Pt(111) at coverages of θ = K0.9–;1. The monolayer coverage was 5.4 × 1014K atoms/cm2 (0.36 times the atomic density of the Pt(111) surface). Orientational reordering of the adlayers, similar to the behavior of noble gas phase transitions on metals, was observed. The heat of desorption of K decreased, due to depolarization effects, from 60 kcal/mole at θK <0.1, to 25 kcal/mole at θK = 1 on both Pt(111) and Pt(755). Exposure to oxygen thermally stabilizes a potassium monolayer, increasing the heat of desorption from 25 to 50 kcal/mole. Both potassium and oxygen were found to desorb simultaneously indicating strong interactions in the adsorbed overlayer. LEED results on Pt(111) further indicate that a planar K2O layer may be formed by annealing coadsorbed potassium and oxygen to 750 K.  相似文献   

11.
H. Papp 《Surface science》1983,129(1):205-218
The chemisorption of CO on Co(0001) has been investigated by LEED, UPS, EELS, Auger and sp measurements. CO is molecularly adsorbed on Co(0001) in the investigated temperature range from 100 to 450 K. This is deduced from the UPS and EELS results and the reversibility of the sp and LEED data. The isosteric heat of adsorption has a constant value of 128 kJ/mol up to a coverage of 13 and drops then to about 96 kJ/mol. This coincides with the completion of a (√3 × √3)R30° overlayer structure and the formation of a (2√3 × 2√3)R30° CO overlayer which is fully developed at 100 K.  相似文献   

12.
The chemisorption of CO on Co(0001) and on a polycrystalline specimen has been studied by LEED, Auger spectroscopy, and thermal desorption measurements. Annealing of the polycrystal was found to result in a surface dominated by crystallites of (0001) orientation in the surface plane, along with a few (101&#x0304;2) oriented crystallites. CO adsorbs on the clean surface at 300 K with an initial sticking probability of 0.9 and the system follows precursor state kinetics. The saturation coverage under UHV conditions corresponds to a well-ordered (√3 × √3)R30° structure; with PCO>5 × 10-9 a uniform compression of the adlayer takes place and a (√7 × √7)R19.2° structure begins to form. Models are proposed for these two ordered phases which are in agreement with the observed relative coverage data and the appearance of the corresponding desorption spectra. The desorption enthalpy of CO at low coverages is 103 ± 8 kJmol-1, and a fairly sharp fall in this enthalpy occurs for coverages >13. In many respects, the system's behaviour closely resembles that of Ni(111)-CO. Oxygen contamination leads to the appearance of a strongly adsorbed CO state with a desorption enthalpy of ~170 kJmol-1. This is reminiscent of a strongly adsorbed non-dissociated state of CO on Ru(101&#x0304;1) which occurs under similar conditions.  相似文献   

13.
Electron spin polarization and intensity profiles have been measured in low electron diffraction (LEED) for the (00) beam at θ = 13° and ø = 0° from a W(001) surface exposed to CO and annealed to obtain an ordered c(2 × 2) CO overlayer. The annealed surface with additional CO adsorbed was also studied. The polarization was found to be sensitive to the surface condition and the very distinct P?V profile corresponding to the c(2 × 2) overlayer is believed to be a very sensitive indicator of CO in the β3 phase. The properties of the annealed surface exposed to further CO suggest the use of this surface as a low energy electron spin polarization analyzer.  相似文献   

14.
The chemisorption and subsequent reaction of bromine on Cr(110 has been studied by Auger spectroscopy, LEED, Δφ, and thermal desorption measurements. For gas doses of < 7.5 × 1018 molecules m?2, very efficient dissociative chemisorption leads to a series of well-ordered, out-of-registry compression structures. Uniquely, however, the overlayer falls back into registry at saturation coverage; at this point the appearance of glide symmetry indicates that the three-fold coordinated adsorption sites are occupied exclusively. Brominemetal charge transfer occurs during adsorption (in contrast to Cr(100)). On raising the temperature at low coverages, the surface phase decomposes by evaporation as CrBr molecules; at higher coverages the desorption product switches to CrBr2. Continuous growth of bulk CrBr2 sets in at high gas exposures, this corrosion reaction proceeding at a rate which is ten times slower than the rate of overlayer formation. The chromium dibromide layer also evaporates as CrBr2(g). Structural relationships with related metal-halogen systems are discussed.  相似文献   

15.
The absolute coverage of deuterium adsorbed on Ni(110) at temperatures below 170 K to the formation of a (1 × 2) LEED pattern has been determined by nuclear microanalysis (NMA). The result, θD = 0.96 ± 0.08, is consistent with a saturation coverage of one full monolayer. Heating the crystal above ~ 190 K is shown to result in a gradual loss of deuterium from the system, accompanied by streaking of the LEED pattern, with complete desorption above ~ 340 K. The low-temperature (2 × 1)-D phase was found to correspond to θD = 0.64 ± 0.05 monolayers. The results are expected to be valid also for the equivalent phases obtained by hydrogen adsorption.  相似文献   

16.
Reflection-adsorption infrared spectroscopy has been combined with thermal desorption and surface stoichiometry measurements to study the structure of CO chemisorbed on a {111}- oriented platinum ribbon under uhv conditions. Desorption spectra show a single peak at coverages > 1014 molecules cm?2, with the desorption energy decreasing with increasing coverage up to 0.4 of a monolayer, and then remaining constant at ≈135 kJ mol?1 until saturation. The “saturation” coverage at 300 K is 7 × 1014 molecules cm?2, and no new low temperatures state is formed after adsorption at 120 K. Infrared spectra show a single very intense, sharp band over the spectral range investigated (1500 to 2100 cm?1), which first appears at low coverages at 2065 cm?1 and shifts continuously with increasing coverage to 2101 cm?1 at 7 × 1014 molecules cm?2. The halfwidth of the band at 2101 cm?1 is 9.0 cm?1, independent of temperature and only slightly dependent on coverage. The band intensity does not increase uniformly with increasing coverage, and hysteresis is observed between adsorption and desorption sequences in the variation of both the band intensity and frequency as a function of coverage. The frequency shift and the virtual invariance of the absorption band halfwidt with increasing coverage (Jespite recent LEED evidence for overlayer compression in this system) are attributed to strong dipole-dipole coupling in the overlayer.  相似文献   

17.
The adsorption of CO on Ni(111) has been studied using infrared reflection-absorption spectroscopy combined with LEED, Auger electron spectroscopy, thermal desorption spectroscopy and work function measurements. At low CO coverage (θ = 0.05) CO adsorbs on threefold sites with a strecthing frequency given by ωCO = 1817 cm?1. At θ = 0.30 all molecules have shifted to two-fold sites, and θ = 0.50, where a c(4 × 2) structure is observed, ωCO = 1910 cm?1. At θ = 0.57, with a (√7/2) × √7/2)R19.1° structure, one quarter of the molecules are adsorbed on top of the nickel atoms with the others in two-fold sites. Molecules bonded on the top sites give rise to a band at 2045 cm?1. The frequency shift due to dipole-dipole interactions is small compared with the shift resulting from bonding to different crystallographic sites.  相似文献   

18.
The adsorption and desorption chemistry of NO on the clean Rh{111} and Rh{331} single crystal surfaces was followed with SIMS, XPS, and LEED. Results suggest dissociative NO adsorption occurs at step and/or defect sites. At saturation coverage there was ~ 10 times more dissociated species on the Rh{331} surface at 300 K than on the Rh{111} surface. On both surfaces two molecular states of NOads have been identified as β1, and β2 which possess different chemical reactivity. Under the condition of saturation coverage the β1 and β2 states are populated on the Rh{111} surface in a different proportion than on the Rh{331} surface. Further, their population on both surfaces is coverage and temperature dependent. When the sample is heated to desorb the saturation overlayer formed on the Rh{111} and Rh{331} crystal surfaces, approximately 50% of the overlayer is found to desorb below ? 400 K primarily from the β2 state, molecularly as NO(g). Between 300 and 400 K the β1 state dissociates as binding sites necessary to coordinate Nads and Oads are freed by desorption of NO(g).  相似文献   

19.
LEED, electron energy loss spectroscopy and surface potential measurements have been used to study the adsorption of Xe and CO on Cu (311). Xe is adsorbed with a heat of 19 ± 2 kJ mol/t-1. The complete monolayer has a surface potential of 0.58 V and a hexagonal close-packed structure with an interatomic distance of 4.45 ± 0.05 Å. CO gives a positive surface potential increasing with coverage to a maximum of 0.34 V and then falling to 0.22 V at saturation. The heat of adsorption is initially 61 ± 2 kJ mol?1, falling as the surface potential maximum is approached to about 45 kJ mol?1. At this coverage streaks appear in the LEED pattern corresponding to an overlayer which is one-dimensionally ordered in the [011&#x0304;] direction. Additional CO adsorption causes the heat of adsorption to decrease further and the overlayer structure to be compressed in the [011&#x0304;] direction. At saturation the LEED pattern shows extra spots which are tentatively attributed to domains of a new overlayer structure coexisting with the first. Electron energy loss spectra (EELS) of adsorbed CO show two characteristic peaks at 4.5 and 13.5 eV probably arising from transitions between the electronic levels of chemisorbed CO.  相似文献   

20.
W Mokwa  D Kohl  G Heiland 《Surface science》1984,139(1):98-108
The UHV cleaved (110) face has been exposed to water in the range from 10 L to 2 × 104 L. The main TDS peak in H2O desorption appears at 350 K, independent of coverage. The low desorption energy of 0.7 eV (16 kcal/mol) is reasonable for oxygen atoms bound via the lone pair orbital to As as was earlier derived from UPS measurements. A broad spur between 450 and 600 K may be related to O-Ga bonds. The sticking probability shows values below 10-4; only near 4.8 × 103 L (6 × 1015 cm-2 s-1 H2O molecules for 300 s) corresponding to a coverage of about 0.4 monolayes a steep maximum appears. At about one monolayer saturation is observed. Exposures to more than 104 L of water quench the intensity of the (10) LEED spot considerably stronger than the intensity of the (11) spot. A comparison of the I(E) curves with existing model calculations suggests that the observed behaviour of the LEED spots is caused by a change in surface structure towards the unrelaxed configuration. The higher sticking coefficient observed near 0.4 monolayers may be connected with this rearrangement of surface atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号