首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper describes a method for manufacturing luminescent cellulose fibers. Good optical properties of cellulose fibers under UV-C illumination were achieved by incorporating ZrO2 (0.5?mol% of Eu3+) stabilized by Y2O3 (7?mol%) into the fiber structure’s particles. Fibers were obtained from 8?wt% cellulose solution in N-methylmorpholine N-oxide (NMMO) with the addition of a luminescent modifier in the range between 0.5 and 10?wt%. The physico-chemical and mechanical parameters and the structure of these fibers were examined.  相似文献   

2.
The multicolor Gd2O2S:xTb3+, yEu3+ hollow spheres were successfully synthesized via a template-free solvothermal route without the use of surfactant from commercially available Ln (NO3)3·6H2O (Ln = Gd, Tb and Eu), absolute ethanol, ethanediamine and sublimed sulfur as the starting materials. The phase, structure, particle morphology and photoluminescence (PL) properties of the as-obtained products were investigated by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM) and photoluminescence spectra. The influence of synthetic time on phase, structure and morphology was systematically investigated and discussed. The possible formation mechanism depending on synthetic time t for the Gd2O2S phase has been presented. These results demonstrate that the Gd2O2S hollow spheres could be obtained under optimal condition, namely solvothermal temperature T = 220 °C and synthetic time t = 16 h. The as-obtained Gd2O2S sample possesses hollow sphere structure, which has a typical size of about 2.5 μm in diameter and about 0.5 μm in shell thickness. PL spectroscopy reveals that the strongest emission peak for the Gd2O2S:xTb3+ and the Gd2O2S:yEu3+ samples is located at 545 nm and 628 nm, corresponding to 5D47F5 transitions of Tb3+ ions and 5D07F2 transitions of Eu3+ ions, respectively. The quenching concentration of Tb3+ ions and Eu3+ ions is 7%. In the case of Tb3+ and Eu3+ co-doped samples, when the concentration of Tb3+ or Eu3+ ions is 7%, the optimum concentration of Eu3+ or Tb3+ ions is determined to be 1%. Under 254 nm ultraviolet (UV) light excitation, the Gd2O2S:7%Tb3+, the Gd2O2S:7%Tb3+,1%Eu3+ and the Gd2O2S:7%Eu3+ samples give green, yellow and red light emissions, respectively. And the corresponding CIE coordinates vary from (0.3513, 0.5615), (0.4120, 0.4588) to (0.5868, 0.3023), which is also well consistent with their luminous photographs.  相似文献   

3.
A series of red-emitting phosphors Eu3+-doped M2Gd4(MoO4)7 (M=Li, Na) have been successfully synthesized at 850 °C by solid state reaction. The excitation spectra of the two phosphors reveal two strong excitation bands at 396 nm and 466 nm, respectively, which match well with the two popular emissions from near-UV and blue light-emitting diode chips. The intensity of the emission from 5D0 to 7F2 of M2(Gd1−xEux)4(MoO4)7 phosphors with the optimal compositions of x=0.85 for Li or x=0.70 for Na is about five times higher than that of Y2O3:Eu3+. The quantum efficiencies of the entitled phosphors excited under 396 nm and 466 nm are also investigated and compared with commercial phosphors Sr2Si5N8:Eu2+ and Y3A5O12:Ce3+. The experimental results indicate that the Eu3+-doped M2Gd4(MoO4)7 (M=Li, Na) phosphors are promising red-emitting phosphors pumped by near-UV and blue light.  相似文献   

4.
Red phosphors gadolinium tungstate and molybdate with the formula Gd(2−x)MO6:Eux3+ (M=Mo, W) were successfully synthesized by the solid-state reaction at 900 and 1300 °C for 4 h, respectively. The products were characterized by an X-ray powder diffractometer (XRD), TG-DSC, FT-IR, PL, UV-vis and SEM. Room-temperature photoluminescence indicated that the as-prepared Gd(2−x)MO6:Eux3+ (M=Mo, W) had a strong red emission, which is due to the characteristic transitions of Eu3+ (5D07FJ, J=0, 1, 2, 3, 4) for these phosphors. Meanwhile, the 5D07F2 is in the dominant position. The emission quantum efficiency of Eu3+ in the Gd(2−x)MO6:Eux3+ (M=Mo, W) system has been investigated. The XRD results indicate that both Gd2WO6 and Gd2MoO6 belong to the monoclinic system with space group C2/c [A. Bril, G. Blasse, J. Chem. Phys. 45 (1966) 2350-2356] and I2/a [A. Bril, G. Blasse, J. Chem. Phys. 45 (1966) 2350-2356], respectively. SEM images indicate that the shape of Gd1.96WO6:Eu0.043+ is aggregated small particles with a mean diameter of about 300 nm, and the shape of Gd1.96MoO6:Eu0.043+ is block-like structures.  相似文献   

5.
Rare-Earth Actived Sol-Gel Films for Scintillator Applications   总被引:2,自引:0,他引:2  
Recently, there has been a growth of interest in new phosphors preparation for high resolution X-rays imaging systems. Sol-gel method has been used to synthesize europium doped gadolinium and lutetium oxide films. Structural and optical results are investigated and discussed on both Gd2O3:Eu3+ (5 mol%) and Lu2O3:Eu3+ (5 mol%). Those films are crystallized into cubic phase and present a density of 7.1 g/cm3 and 8.4 g/cm3 for Gd2O3:Eu3+ and Lu2O3:Eu3+ respectively. Room temperature emission spectra using an excitation of 468 nm was used to obtain the intense red emission 5D0 7F2 (611 nm) of Eu3+. Scintillation properties at 611 nm are finally proved using X-rays excitation.  相似文献   

6.
《Chemical physics letters》1987,133(5):425-428
The luminescence of NaGdF4:Ce,Eu has been investigated. After excitation of Ce3+ ions at room temperature, energy transfer to the Gd3+ions occurs, followed by migration over this sublattice to the Eu3+ions, resulting mainly in Eu3+ emission. At liquidhelium temperatures mainly Gd3+6P trap emission is observed. The Eu3+ emission in this system is remarkable, because ultraviolet Eu3+ emission (5H3-7FJ) is observed alongside the normal 5DJ emission in the visible region.  相似文献   

7.
Eu3+-doped Gd3PO7 nanospheres with an average diameter of ∼300 nm and a narrow size distribution have been prepared by a facile combustion method and structurally characterized by X-ray diffraction and field emission scanning electron microscopy. The luminescent properties were systemically studied by the measurement of excitation/emission spectra, and emission spectra under different temperatures, as well as by photostability. The strong red-emission intensity peaking at 614 nm originates the 5D07F2 transition and is observed under 254-nm irradiation, indicating that Eu3+ ions in Gd3PO7 mainly occupied non-centrosymmetry sites. The CIE1931 XY chromaticity coordinates of Gd3PO7:Eu3+ nanospheres are (x=0.654, y=0.345) in the red area, which is near the National Television Standard Committee standard chromaticity coordinates for red. Thus, Gd3PO7:Eu3+ nanospheres may be potential red-emitting phosphors for PDP and Xe-based mercury-free lamps.  相似文献   

8.
We present a method for synthesis of silver nanoparticles in N-methylmorpholine N-oxide (NMMO) and the associated mechanism, as well as their use for in situ volume modification of cellulose fibers. The synthesized particles had diameter of about 4 nm, and their colloid solution was stable for 1 year. The nanoparticles were stabilized using polyethylenimine, which apart from preventing nanoparticle agglomeration, also accelerated Ag+ ion reduction and prevented NMMO degradation. A mechanism for the nanoparticle synthesis is suggested based on the electrochemical potentials of all ions in solution, with perhydroxyl ions resulting from NMMO reducing the silver ions. We also created nanocomposites from fibers and silver nanoparticles, in which the latter showed very good dispersion in the fiber volume. Such spun fibers showed improved mechanical parameters in comparison with unmodified fibers.  相似文献   

9.
Rare‐earth‐doped aluminosilicates of alkaline earth MgAl2Si2O8: Eu3+, Dy3+ and MgAl2Si2O8: Eu3+, Gd3+ were synthesized by the solid state reaction method at 1300 oC. The phosphors were characterized by X‐ray powder diffraction (XRD), photoluminescence (PL), thermoluminescence (TL) and scanning electron microscopy (SEM). X‐ray powder diffraction studies show that the phosphors were crystallized in the triclinic crystal system. The phosphors show characteristic broad band phosphorescence of Eu3+. This broad band phosphorescence has red emission bands in the range of 580–705 nm corresponding to 5D07Fj (j:0,2,3,4) transitions of Eu3+.  相似文献   

10.
Abstract

The complexation of ethylenediamine, triethylenetetramine, acetic acid, glutaric acid, succinic acid, maleic acid, fumaric acid, malonic acid, iminodiacetic acid, nitrilotriacetic acid, N-(2-hydroxyethyl)ethylenediaminetriacetic acid, N 1-(4-isothiocyanatobenzyl)di-ethylene-triaminetetraacetic acid, trans-1, 2-diaminocyclohexane-N, N, N, N'-tetraacetic acid and diethylenetriaminepentaacetic acid (DTPA) with Eu3+ ion in aqueous solution has been studied by using the 7FO5DO excitation spectroscopy of the Eu3+ ion. Because the energy of the 7FO5DO transition of Eu3+ is dependent on the coordinating oxygen atoms, the “nephelauxetic” shift parameters for most typical coordinating atoms, such as in the carboxylate group, aliphatic amino nitrogen and the pyridine nitrogen atom were recalculated by multilinear regression with the present set of 22 complexes. The calculated shift parameters were used for the analysis of the excitation spectra of the complexes of diethylenetriaminepentaacetic acid, trans-1, 2-diaminocyclo-hexane-N, N, N, N', -tetraacetic acid and N-(2-hydroxyethyl)ethylenediaminetriacetic acid.  相似文献   

11.
A modified low temperature solid state process has been proposed to systematically synthesize europium-doped yttrium phosphate-vanadates with general formula Y0.48Li1.5V1 ? x P x O4:Eu3+ (x = 0.2, 0.4, 0.6). All the Y0.48Li1.5V1 ? x P x O4:Eu3+ products were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The excitation and emission spectra were measured at room temperature. Y0.48Li1.5V1 ? x P x O4:Eu3+ show the characteristic missions of Eu3+ (5 D 0?7 F 1, 2, 3, 4 transitions dominated by 5 D 0?7 F 2), intensities of the products were sensitive to the x value, and the x value had an obvious influence on the (5 D 0?7 F 2)/(5 D)0?7 F 1) intensity ratio of Eu3+. In addition, incorporation of Li+ ions in the phosphors reduce the amount of Y2O3, lower the cost of production, and cause a new phase Li3VO4.  相似文献   

12.
A white light-emitting CaW1?x Mo x O4:Tm3+, Tb3+, Eu3+ phosphor was prepared by a Pechini sol?Cgel method. The incorporation of Mo6+ into the CaWO4 host matrix can broaden its excitation range and promote tunability to its emission. When the CaW1?x Mo x O4 system is triply-doped with Tm3+, Tb3+, and Eu3+ ions, energy transfer occurs from both WO4 2? and MoO4 2? groups to Tm3+ and Tb3+ ions. A significant red-shift in the excitation of Eu3+ allows the resulting emission to be tunable between cool, natural, and warm white light by varying the excitation wavelength. The undoped and triply-doped CaW1?x Mo x O4 phosphors were characterized by X-ray diffraction, scanning electron microscopy, photoluminescence excitation and emission spectra, and CIE chromaticity (x, y) coordinates.  相似文献   

13.
We demonstrate herein a facile hydrothermal synthesis followed by post-annealing approach to selectively prepare MgAl2O4:Eu3+ nanoplates and nanoparticles. Series of scientific techniques such as XRPD, FESEM, TEM, HRTEM, and PL were adopted to characterize the as-prepared MgAl2O4:Eu3+ phosphors. First, by altering the amount of hexamethylenetetramine (abbr. HMTA) in solution, MgAl2O4:Eu3+ nanoplates occurred. Next, MgAl2O4:Eu3+ nanoparticles were prepared by adding certain amounts of sodium citrate and sodium dodecylbenzenesulfonate (abbr. SDBS). In particular, the MgAl2O4:Eu3+ nanoplates have novel porous structures. Besides, the MgAl2O4:Eu3+ phosphors exhibit excellent red-emitting properties based upon the characteristic transitions of Eu3+ from 5D0  7FJ (J = 0, 1, 2, 3, and 4).  相似文献   

14.
Photoluminescence in the System A2II B1/4IIGd1/2?xEux1/4WO6 ? A8IIBIIGd2?xEuxW4O24 (AII, BII = Sr, Ba) The emission and excitation spectra for the series Sr8SrGd2?xEux□W4O24 (HT- and LT-modifications) and Sr9?yBayEu2□W4O24 are reported and discussed. HT- and LT-Sr8SrEu2□W4O24 show an intense red emission, no concentration quenching is present.  相似文献   

15.
Y2O3:Eu3+ (5 mol% Eu3+) and Y2O3:Eu3+ (5 mol% Eu3+) containing 1 mol% of Ag nanoparticles were prepared by heat treatment of a viscous resin obtained via citrate precursor. TEM and EDS analyses showed that Y2O3:Eu3+ (5 mol% Eu3+) is formed by nanoparticles with an average size of 12 nm, which increases to 30 nm when Ag is present because the effect of metal induced crystallization occurs. Ag nanoparticles with a size of 9 nm dispersed in Y2O3:Eu3+ (5 mol% Eu3+) were obtained and the surface plasmon effect on Ag nanoparticles was observed. The emission around 612 nm assigned to the Eu3+ (5D07F2) transition enhanced when the Ag nanoparticles were present in the Y2O3:Eu3+ luminescent material.  相似文献   

16.
采用sol-gel法合成了系列发光体Li2O-Ln2O3-SiO2:Eu^3^+,Bi^3^+,并确定了发光体的物相结构。当Ln^3^+=Y^3^+和Ln^3^+=La^3^+时,紫外光激发下Eu^3^+的发射分别以红光和橙光为主,只存在一种Eu^3^+发光中心;Ln^3^+=Gd^3^+时,至少存在两种Eu^3^+发光中心和两种Bi^3^+发光中心(共掺杂Eu^3^+,Bi^3^+的吸收和发射所  相似文献   

17.
By using a hydrothermal method, a series of Eu3+ concentration dependent GdF3 nanocrystals have been synthesized. The crystalline structures of samples are characterized by XRD patterns, the morphology and size of the samples are illustrated by FE-SEM images, and the optical properties of the samples are presented by PL excitation and emission spectra. The energy transfer from host Gd3+ to Eu3+ is observed in the Eu3+ doped GdF3 nanocrystals. The optical properties of Eu3+ and the energy transfer efficiency from host Gd3+ to Eu3+ are discussed on the basis of the Eu3+ concentration dependent integrated PL excitation and emission spectra of Gd3+ and Eu3+. The discussion on optical properties of Eu3+ and the energy transfer from Gd3+ to Eu3+ is meaningful to design and synthesize Gd3+ based compounds.  相似文献   

18.
The oxyfluoride garnets of formula Y3Fe5?xMxO12?xFx and Gd3Fe5?xMxO12?xFx (M = 3d transition element) result from partial substitution of O2? by F? in Y3Fe5O12 and Gd3Fe5O12 oxides. The cationic charge compensation is obtained by replacing the Fe3+ ions by divalent ions as Mn2+, Co2+, Ni2+, Cu2+ or Zn2+ ions. The site occupied by some of these ions (Mn2+, Ni2+, Zn2+) is determined by magnetic or Mössbauer measurements.  相似文献   

19.
Monazite-type polyphosphate CaLaP3O10 was synthesized by solid-state reaction at 1000 °C and their photoluminescence of Eu3+ and Tb3+ in CaLaP3O10 under ultraviolet (UV) and vacuum-ultraviolet (VUV) excitation were evaluated for the first time. The emission spectra of CaLaP3O10:Eu3+showed that Eu3+ are in a site with inversion symmetry because the magnetic dipole transition 5D0-7F1 was the strongest both upon 254 and 147 nm excitation. Monitored at 621 nm the excitation spectra consisted of host absorption bands, charge transfer band of Eu-O and the intraconfiguration 4f6 transition of Eu3+. Green phosphor CaLaP3O10:Tb3+exhibited better color purity when excited by 147 nm than that excited by 254 nm. With monitored at 542 nm the host absorption bands of CaLaP3O10:Tb3+ were also observed. Besides the host absorption bands there were strong f-d and weak f-f transitions of Tb3+.  相似文献   

20.
The Ba2GdNbO6: Eu3+/Dy3+ and Li+-doped Ba2GdNbO6: Eu3+/Dy3+ phosphors were prepared by solid-state reaction process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and photoluminescence (PL) as well as lifetimes, was utilized to characterize the resulting phosphors. Under the excitation of ultraviolet light, the Ba2GdNbO6: Eu3+/Dy3+ and Li+-doped Ba2GdNbO6: Eu3+/Dy3+ show the characteristic emissions of Eu3+ (5D0-7F1,2,3 transitions dominated by 5D0-7F1 at 593 nm) and Dy3+ (4F9/2-6H15/2,13/2 transitions dominated by 4F9/2-6H15/2 at 494 nm), respectively. The incorporation of Li+ ions into the Ba2GdNbO6: Eu3+/Dy3+ phosphors has enhanced the PL intensities depending on the doping concentration of Li+, and the highest emission was obtained in Ba2Gd0.9NbO6: 0.10Eu3+, 0.01Li+ and Ba2Gd0.95NbO6: 0.05Dy3+, 0.07Li+, respectively. An energy level diagram was proposed to explain the luminescence process in the phosphors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号