共查询到20条相似文献,搜索用时 11 毫秒
1.
Pétriat F Roux E Leroux JC Giasson S 《Langmuir : the ACS journal of surfaces and colloids》2004,20(4):1393-1400
Molecular interactions between a terminally alkylated pH-sensitive N-isopropylacrylamide copolymer DODA-poly(NIPAM-co-MAA) and a monolayer of distearoylphosphatidylcholine (DSPC) at the air/water interface are investigated using the Langmuir balance technique. The compression isotherms ofthe copolymer monolayer at the air-water interface confirm that the copolymer undergoes a structural transition with a change in pH ranging from an extended coil state at neutral pH to a collapsed globular state at a pH corresponding to the pH of the polymer phase transition. Adsorption kinetics of DODA-poly(NIPAM-co-MAA) in the DSPC monolayer is analyzed using a first-order kinetics model allowing an effective interaction area Ax between DSPC and DODA-poly(NIPAM-co-MAA) molecules to be evaluated. The results clearly indicate that the interaction area increases with a decrease in pH. The results also suggest that the penetration of the DODA-poly(NIPAM-co-MAA) within the phospholipid monolayer is enhanced by a decrease in pH which causes a change in the copolymer structure and an increase in specific attractive interactions between the copolymer and the phospholipid. Therefore, the copolymer can trigger the destabilization or rupture of the phospholipidic layer through a simple variation in its structure associated with a variation in molecular interactions when coupled or inserted within the membrane. This study greatly supports the prospects of the copolymer-functionalized liposomes as stable and tunable carrier systems for in vivo applications in drug delivery. 相似文献
2.
Paolo Benigni Rebecca Marin Juan Camilo Molano-Arevalo Alyssa Garabedian Jeremy J. Wolff Mark E. Ridgeway Melvin A. Park Francisco Fernandez-Lima 《International Journal for Ion Mobility Spectrometry》2016,19(2-3):95-104
In the present work, we demonstrate the potential and versatility of TIMS for the analysis of proteins, DNA-protein complexes and protein-protein complexes in their native and denatured states. In addition, we show that accurate CCS measurement are possible using internal and external mobility calibration and in good agreement with previously reported CCS values using other IMS analyzers (<5 % difference). The main challenges for the TIMS-MS analysis of high mass proteins and protein complexes in the mobility and m/z domain are described. That is, the analysis of high molecular weight systems in their native state may require the use of higher electric fields or a small compromise in the TIMS mobility resolution by reducing the bath gas velocity in order to effectively trap at lower electric fields. This is the first report of CCS measurements of high molecular weight biomolecules and biomolecular complexes (~150 kDa) using TIMS-MS. 相似文献
3.
The influence of thermal annealing on molecular weight, microphase mixing, and multiple melting behavior of a segmented block copolyurethane is reported. The material studied contained 55% of hard segment consisting of 4,4'-diphenylmethane diisocyanate and butanediol, and a poly (propylene oxide) diol of molecular weight 2000 as the soft segment. The thermal stability of the materials was influenced greatly by the order-disorder transition, estimated to occur at ca. 191°C. Upon annealing above this temperature, molecular weight increased rapidly as a result of chain branching reactions. Microphase separation increased under these conditions, while the degree of hard segment crystallinity decreased. Annealing below the order-disorder transition temperature resulted in relatively small molecular weight increases for short annealing times, but large increases for annealing times greater than one hour. Glass transition temperature data for these thermal treatments was consistent with upper critical solution temperature behavior and selective solubility by hard segment sequence length according to the Koberstein-Stein hard microdomain model. The critical hard segment sequence for segregation was estimated (for 30 min annealing) to contain ca. 5 diisocyanate residues at 80°C, ca. 8 residues at 185°C, and increased slowly with annealing time. © 1994 John Wiley & Sons, Inc. 相似文献
4.
Jessica Listak Xiaolong Jia Andrzej Plichta Mingjiang Zhong Krzysztof Matyjaszewski Michael R. Bockstaller 《Journal of Polymer Science.Polymer Physics》2012,50(2):106-116
The effect of homopolymer (hP) addition on the structure formation in lamellar amorphous block copolymers (BCP) with narrow‐ and broad‐molecular weight distribution (MWD) was studied using small‐angle X‐ray scattering and transmission electron microscopy. The systems in our study consist of blends of a poly(styrene‐b‐methyl acrylate) copolymer with block‐selective broad MWD of the poly(methyl acrylate) domain as well as polystyrene and poly(methyl acrylate) hPs with molecular weight less than the corresponding block of the copolymer. Homopolymer addition to the broad MWD domain of the BCP is found to induce structural changes similar to narrow MWD BCP/hP blend systems. Conversely, addition of hP to the narrow MWD domain is found to induce a more pronounced expansion of lamellar domains due to the segregation of the hP to the center region within the host copolymer domain. With increasing hP concentration, the formation of a stable two‐phase regime with coexisting lamellar/gyroid microphases is observed that is bounded by uniform lamellar phase regimes that differ in the distribution of hP within the corresponding narrow MWD block domain. The segregation of low‐molecular weight hP to the center region of the narrowdisperse domains of a broad MWD BCP is rationalized as a consequence of the more stretched chain conformations within the narrowdisperse block that are implied by the presence of a disperse adjacent copolymer domain. The increase of chain stretching reduces the capacity of the narrowdisperse block to solubilize hP additives and thus provides a driving force for the segregation of hP chains to the center of the host copolymer domain. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 106–116, 2012 相似文献
5.
The structure of ethylene copolymers modified by α-olefins has become an area of intense investigation since the successful commercialization of so-called linear low-density polyethylene (LLDPE) resins. The molecular structure of a series of typical commercial LLDPE copolymers was investigated and compared to LDPE and HDPE. The commercial LLDPE resins studied contained about 7% by weight of butene-1. The resins were fractionated according to short-chain branching content by a technique called temperature rising elution fractionation. Size exclusion chromatography, x-ray diffraction, 13C nuclear magnetic resonance, intrinsic viscosity, and differential scanning calorimetry were used to fully characterize the whole polymers as well as fractions of a selected LLDPE resin. A broad set of data was assembled in this work to investigate the short-chain branching, long-chain branching, and the molecular-weight distribution of these commercial resins. The melting behavior of the LLDPE resins was found to be strikingly different from that of LDPE and HDPE. The broad and multimodal melting envelope of the LLDPE resins was found to be due to a broad and multimodal short-chain branching distribution. No significant long-chain branching was found in the LLDPE resins. The short-chain branching was found to decrease with the increase of molecular weight in a typical commercial LLDPE resin. The unique physical properties of these resins are certainly strongly controlled by the expression of the distinctive heterogeneous comonomer incorporation in the solid-state morphological structure. The physical and mechanical properties of these materials should be ultimately understandable on the basis of the unique morphology which results from the extremely heterogeneous incorporation of modifying α-olefin in these commercial LLDPE resins. 相似文献
6.
Effect of molecular weight of a thermoplastic copolymer on final morphology of polymerization induced phase separation of trimethylolpropane triacrylate/copolymer blends have been studied. Two acrylate copolymers, ACHM and ACLM, mainly based on methyl methacrylate, butyl acrylate and styrene were synthesized with high and low molecular weight, respectively. Final morphology of TMPTA/ACHM and TMPTA/ACLM blends were investigated by optical microscopic observation of ensemble of surface and bulk phase separation status points of view. Image analysis were done to provide related characteristic length scales.Polymerization induced phase separation of TMPTA/ACHM and TMPTA/ACLM resulted in different final morphologies with different characteristic length scales, which was attributed to the kinetic effect of the copolymer chains mobility during two-step phase separation induced during the thermal history and UV-irradiation periods. 相似文献
7.
Grafting and anchoring of molecular complexes as metal precursors for alumina-supported Pd catalysts
《Journal of Coordination Chemistry》2012,65(15):2304-2321
AbstractThe surface coordination chemistry of Pd complexes on alumina has been studied in the framework of synthesizing Pd/γ-Al2O3 catalytic materials. Two methodologies were explored: the direct grafting of Pd complexes on hydroxyl functions present at the alumina surface and the anchoring of the precursors via amine-bearing silanes previously grafted on the support. Suitable conditions to graft and anchor Pd complexes on alumina surface were found and experimental proofs of grafting and anchoring processes are provided. The results show that covalent grafting indeed took place for samples prepared in acetonitrile with [Pd(CF3CO2)2(bipy)] and [PdCl2(PhCN)2] complexes or with [Pd(OAc)2] and [Pd(CF3CO2)2] in acetone. The anchoring was successful for catalysts prepared in acetone with 1 wt.% of [Pd(CF3CO2)2] loading. Grafting and anchoring were found to stabilize palladium in its Pd(II) oxidation state. This has an adverse effect on the activation step that should lead to reduction of the complex to give the metallic catalytic supported active phase. 相似文献
8.
Lipids and block copolymers can be individually assembled into unsupported, spherical membranes (liposomes or polymersomes), each having their own particular benefits and limitations. Here we demonstrate the preparation of microscale, hybrid "lipopolymersomes" composed of the common lipid POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine) and the commercially available copolymer PBd-b-PEO (polybutadiene-b-poly(ethylene oxide)) with the goal of incorporating the advantageous qualities of the unitary systems into mixed-membrane capsules. We investigate the lipopolymersomes using confocal fluorescence microscopy and demonstrate that these hybrid membranes are well mixed on nanoscopic length scales within the permittable compositional windows for hybrid vesicle formation. We measure the intramembrane dynamics and mechanical properties of these hybrid membranes by fluorescence recovery after photobleaching (FRAP) and micropipet aspiration, respectively. For the first time, we demonstrate the demixing of lipid-rich and polymer-rich membrane domains within the same vesicle membrane. This is achieved by the biotinylation of one of the constituent species and cross linking with the protein NeutrAvidin. The resultant domain patterning is dependent upon which component carries the biotin functionality: cross linking of the copolymer species results in domains that ripen into a single, large, copolymer-rich island, and cross linking of the lipids yields many small, "spot-like", lipid-rich domains within a copolymer-rich matrix. We discuss these morphological differences in terms of the fluidity and mechanical properties of the membrane phases and the possible resultant interdomain interactions within the membrane. These heterogeneous hybrid lipopolymersomes could find applications in fields such as targeted delivery, controlled release, and environmental detection assays where these capsules possess the characteristics of biocompatible lipid membranes combined with enhanced mechanical strength and stability from the copolymer matrix. 相似文献
9.
Ting Shan Jie Chen Liming Yang Shaowei Jie Qiang Qian 《Journal of Radioanalytical and Nuclear Chemistry》2009,279(1):75-82
A β-cyclodextrin (β-CD) based monomer (MAH-β-CD) containing vinyl and carboxyl functional groups was synthesized by reaction
of β-CD with maleic anhydride (MAH). A novel hydrogel, poly(AAc-co-MAH-β-CD) with pH and ionic strength sensitivities, was
prepared by irradiating the aqueous solution mixture of acrylic acid (AAc) and MAH-β-CD with electron beam. The effect of
the feed ratio of the components and irradiation dose on the swelling and deswelling properties of the hydrogel was studied,
respectively, the effect of pH and ionic strength on the swelling ratio was determined. Experimental results showed that these
copolymer hydrogels did not show any noticeable change in swelling ratio at lower pH range (pH 1–3). However they showed an
abrupt increase in swelling ratio at the range of pH 3–6, due to the ionization of carboxyl groups. Fourier transform infrared
(FT-IR) spectrometer was applied in the attenuated total reflectance (ATR) mode for analyzing the structure change of the
hydrogels after the treatment of different pH buffer solutions. 相似文献
10.
由于碳纳米管(CNT)具有优异的力学、电学、光学等性能,近年来,聚合物/碳纳米管(polymer/CNT)复合材料的研究已经成为研究者关注的热点。相关的研究主要集中在:一是将CNT作为填充材料制各复合材料,使复合材料的力学、电学等性能得到提高。二是将CNT作为主体,用聚合物对CNT进行修饰,使CNT在有机溶剂中能够获得良好的溶解度。而对于在聚合反应中,CNT的加入对聚合物分子量影响的研究,相关的报道较少。本文利用悬浮聚合法制备了聚苯乙烯/多壁碳纳米管(PS/MWNT)复合材料,采用透射电镜(TEM)和凝胶渗透色谱(GPC)对其进行了分析,详细研究了MWNT对于PS分子量的影响。 相似文献
11.
The influence of cationic poly(diallyldimethylammonium chloride) on the morphology and phase behavior of anionic phospholipid vesicles was investigated using differential scanning calorimetry, fluorescent microscopy and light scattering technique. A wide range of polymer concentration has been examined for the first time. The polycation can bind electrostatically to the vesicles to compensate, neutralize and reverse the vesicular charge, depending on the molar ratio of cationic to anionic group R. For R<1, charge compensation weakened the electrostatic repulsion between the lipid molecules, leading to formation of polymer-modified vesicles, each with an increased number of bilayers. The bilayer exhibits a rising main phase transition temperature from a gel to liquid crystalline state. This behavior persisted until R≈1 around the neutralization condition, where the complexes became largest and precipitate. With R>1, charge reversal took place, the complex size reduced. Interestingly, the main phase transition temperature was found for the first time to shift back towards the original value in the absence of polymer for large enough R. Although the thermal behavior was nearly independent of the polymer molecular weight, the complex morphology could be different. 相似文献
12.
K. K. Kalninsh 《Journal of Structural Chemistry》2008,49(3):427-447
The essence of the electron-proton effect is clarified by the example of donor-acceptor complexes. It is shown that this effect plays a universal role in accelerating dark and photochemical processes due to interaction between electron and proton excitations. 相似文献
13.
In this paper, we used two simplified methods to understand the influence of surfactant molecular structure on the properties of surfactant-DNA complexes. First, we selected Langmuir balance technique, a two-dimensional (2D) method, which allows complex formation under equilibrium-like conditions, avoiding some of the inherent problems involved in solution. Secondly, two series of simple quaternary ammonium surfactants were used. The cationic surfactant-DNA complex monolayers were formed at the air-water interface through the electrostatic interaction between the ammonium groups of the surfactants and the phosphate groups of DNA at the air-water interface. Combining the results of pi-A isotherms, pi-t isotherms, and atomic force microscopy (AFM) measurements, it was found that the surfactant molecular structures affect the surface properties and morphologies of 2D surfactant-DNA complexes. We expect that the study of the properties of 2D surfactant-DNA complexes will help us to understand the physicochemical properties of surfactant-DNA complexes, which are important for gene delivery. 相似文献
14.
Yanyan Liang Shuangyang Liu Kun Dai Bo Wang Chunguang Shao Qinxing Zhang Songjie Wang Guoqiang Zheng Chuntai Liu Jingbo Chen Changyu Shen Qian Li Xiangfang Peng 《Colloid and polymer science》2012,290(12):1157-1164
Polyamide 66 (PA 66) nanofiber bundles were first electrospun and then introduced into isotactic polypropylene (iPP) melts to prepare nanofiber bundle/iPP composites. To reveal the influences of matrix molecular weight (M n ) on the transcrystalline layer, three kinds of iPP with different M n were adopted. Polarized optical microscope was employed to investigate the transcrystallinity. In the presence of PA 66 nanofiber bundle, the heterogeneous nucleation distinctly happened in iPP melts. Moreover, the higher the iPP M n , the denser the nuclei. Both a decrease in matrix M n and an increase in isothermal crystallization temperature led to an increase in the induction time. The maximum temperature at which the transcrystalline layer can be optically observed increased with the increase of M n . The growth rate of transcrystallinity decreased with the increasing M n and crystallization temperature. Moreover, selective melting of the transcrystalline layers confirmed that it was merely composed of α form crystal for all composites. 相似文献
15.
Polyethylene-polyethylene blend films were prepared by gelation/crystallization from semidilute solution by using ultrahigh molecular-weight (mw) polyethylene (UHMWPE) (mw=6×106) and low molecular weight polyethylene (LMWPE) (mw=4×104). The UHMWPE/LMWPE compositions chosen were 50/50, 67/33, and 91/9. Elongation was carried out in a hot oven at 115–130°C. The drawn films were exposed to an electron beam under nitrogen flow. Radiation doses chosen were 10, 20, 40, and 100 Mrad. crosslinking caused a significant effect in improving high temperature resistance for the blend film with draw ratio of 20 in the case of irradiation doses less than 20 Mrad. The elongation beyond 20 times and high doses beyond 20 Mrad hampered the crosslinking effect and the specimens were easily torn manually. This is thought to be due to the fact that the excess irradiation dose causes main chain scission apart from crosslinking. 相似文献
16.
Olmos D Bagdi K Mózcó J Pukánszky B González-Benito J 《Journal of colloid and interface science》2011,360(1):289-299
In this work ternary composites based on an epoxy thermoset modified with a thermoplastic polymer and reinforced with glass fibers were prepared. The aim of this study is to analyze the influence of the molecular weight of the thermoplastic polymer on the final morphologies. To obtain tailor made interphases four poly(methylmethacrylate), PMMA, which differ in their molecular weight (34,000, 65,000, 76,000 and 360,000 g/mol) were chosen to modify the epoxy resin. The amount of PMMA in the composites was fixed to 5 wt.%. Neat polymer matrices (epoxy-PMMA without fibers) were also prepared for comparison. To study all systems dynamic mechanical analysis (DMA), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used. Although all the systems showed the typical phase separation in the epoxy/PMMA blend, DMA experiments revealed a new phase with more restricted mobility when the glass fibers are present. The amount of this phase increases as molecular weight of PMMA does. The morphologies as well as the fracture surface in the immediate surroundings of the fibers were found to be different from those observed further away from the surface of the fiber, suggesting therefore that, in this case, different fracture mechanism operates. These observations allow us to conclude that an interphase with specific properties is formed. This interphase is based on a polymer or a polymer blend (epoxy-PMMA) enriched in the component with lower mobility. 相似文献
17.
Thermoplastic elastomers (TPEs) based on new generation ultrahigh molecular weight styrene‐ethylene‐butylene‐styrene (SEBS) and thermoplastic polyurethane (TPU) are developed and characterized especially for automotive applications. Influence of maleic anhydride grafted styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MA) and maleic anhydride grafted ethylene propylene rubber (EPM‐g‐MA) as compatibilizers has been explored and compared on the blends of SEBS/TPU (60:40). The amount of compatibilizers was varied from 0 to 10 phr. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies revealed the dramatic changes from a nonuniform to finer and uniform dispersed phase morphology. This was reflected in various mechanical properties. SEBS‐g‐MA modified blends showed higher tensile strength. EPM‐g‐MA modified blends also displayed considerable improvement. Elongation at break (EB) was doubled for the entire compatibilized blends. Fourier‐transform infrared spectrometry (FTIR) confirmed the chemical changes in the blends brought about by the interactions between blend components and compatibilizers. Both SEBS‐g‐MA and EPM‐g‐MA had more or less similar effects in dynamic mechanical properties of the blends. Additionally, melt rheological studies have also been pursued through a rubber process analyzer (RPA) to get a better insight. 相似文献
18.
A simple and general algorithm, convenient for computer implementation, for calculation of the copolymer molecular weight distribution (MWD), its moments, copolymer composition, etc. from standard data has been developed describing copolymerization as a Markovian process. The algorithm is applicable for simulations of multimonomer copolymerization with monomolecular, bimolecular and mixed termination. It can be used for calculating the MWD of copolymers prepared under non-stationary conditions. Explicit formulae have been derived for the above parameters. They are exact even for low-molecular-weight oligomers. The calculation procedure involves nothing but plain matrix operations as matrix multiplication and inversion. For high-molecular-weight copolymers, even simpler dependencies that resemble those used for homopolymers can be used. A very simple numerical test has been proposed for checking their correctness. 相似文献
19.
Ping-Yang Yeh Pavla Kopeckov Jindrich Kopecek 《Journal of polymer science. Part A, Polymer chemistry》1994,32(9):1627-1637
Novel pH-sensitive hydrogels containing azoaromatic crosslinks were synthesized by the crosslinking of polymeric precursors. First, a reactive polymeric precursor was synthesized by copolymerization of N,N-dimethylacrylamide, N-tert-butylacrylamide, acrylic acid, and N-methacryloylglycylglycine p-nitrophenyl ester. The hydrogel was prepared in the second step by the reaction of the polymeric precursor with N,N′-(ω-aminocaproyl)-4,4′-diaminoazobenzene. The hydrogels were characterized by the network structure, (that is, content of crosslinks, unreacted pendent groups, and cycles), the equilibrium swelling ratio as a function of pH, modulus of elasticity in compression, and the degradability in vitro. The results obtained indicated that the hydrogel network structure strongly depends on the reaction conditions such as polymer concentration, and the ratio of the reactive groups during the crosslinking reaction. The swelling and mechanical properties of hydrogels can be controlled by the modification of polymer backbone structure and/or the crosslinking density. The rates of hydrogel degradation depended on their degree of swelling. The higher the degree of swelling, the higher the degradability. The properties of the hydrogels suggest that they have a potential as carriers for colon-specific drug delivery. © 1994 John Wiley & Sons, Inc. 相似文献
20.
Enrico Clementi Riccardo Barsotti Jacob Fromm Robert O. Watts 《Theoretical chemistry accounts》1976,43(2):101-120
A cluster of 200 molecules of water containing one of the LiF, LiCl, NaF, NaCl, KF or KCl ion pairs has been studied at the temperature T= 298°K using Monte Carlo techniques. The anion-cation internuclear separations considered in this work for any of the above pairs are 6.0 Å, 8.0 Å and 10.0 Å. The water-water potential is obtained from quantum-mechanical Hartree-Fock type computations corrected by inclusion of dispersion forces; the ion-water potentials have been obtained from Hartree-Fock type computations on the single ion-water complex. The computed radii for the first hydration shell are 2.7±0.1 Å, 3.4±0.3 Å, 4.0±0.3 Å, 3.0±0.5 Å, and 3.9±0.4 Å, for Li+, Na+, K+, F– and Cl–, respectively. The computed coordination numbers are 5.4±0.7,6.0±1.1, 7.2±1.2,4.5±0.6 and 5.1±0.8 for the same ions, respectively. The range of the coordination number obtained from compressibility, enthalpy, NMR spectroscopy and other experimental methods is much larger than the error ranges above given. Therefore the Monte Carlo simulation provides reliable information on the cluster shape, cluster structure and on the coordination numbers and hydration shell radii for the cations and anions, when both are present in a water cluster. 相似文献