首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
A viscosity model for suspensions of rigid particles with predictive capability over a wide range of particle volume fraction and shear conditions is of interest to quantify the transport of suspensions in fluid flow models. We study the shear viscosity of suspensions and focus on the effect of particle aspect ratio and shear conditions on the rheological behavior of suspensions of rigid bi-axially symmetric ellipsoids (spheroids). We propose a framework that forms the basis to microscopically parameterize the evolution of the suspension microstructures and its effect on the shear viscosity of suspensions. We find that two state variables, the intrinsic viscosity in concentrated limit and the self-crowding factor, control the state of dispersion of the suspension. A combination of these two variables is shown to be invariant with the imposed shear stress (or shear rate) and depends only on the particle aspect ratio. This self-similar behavior, tested against available experimental and numerical data, allows us to derive a predictive model for the relative viscosity of concentrated suspensions of spheroids subjected to low (near zero) strain rates. At higher imposed strain rates, one needs to constrain one of the state variables independently to constrain the state of dispersion of the suspension and its shear dynamic viscosity. Alternatively, the obtained self-similar behavior provides the means to estimate the state variables from the viscosity measurements made in the laboratory, and to relate them to microstructure rearrangements and evolution occurring during deformation.  相似文献   

2.
The rheological behavior of stable slurries is shown to be characterized by a bimodal model that represents a slurry as made up of a coarse fraction and a colloidal size fine fraction. According to the model, the two fractions behave independently of each other, and the non-Newtonian behavior of the viscosity is solely caused by the colloidal fraction, while the coarse fraction increases the viscosity level through hydrodynamic interactions. Data from experiments run with colloidal coal particles of about 2–3 µm average size dispersed in water show the viscosity of these colloidal suspensions to exhibit a highly shearrate-dependent behavior and, in the high shear limit, to match very closely the viscosity of suspensions of uniform size rigid spheres although the coal volume fraction must be determined semi-empirically. Different amounts of coarse coal particles are added to the colloidal suspension and the viscosity of the truly bimodal slurries measured as a function of shear rate. In agreement with the bimodal model, the measured shear viscosities show the coarse fraction to behave independently of the colloidal fraction and its contribution to the viscosity rise to be independent of the shear rate. It is shown that the shear rate exerted on the colloidal fraction is higher than that applied by the viscometer as a result of hydrodynamic interactions between the coarse particles, and that it is this effective higher shear rate which is necessary to apply in the correlations. For determining the coal volume fraction a relatively simple and quite accurate measurement technique is developed for determining the density and void fraction of coarse porous particles; the technique directly relates volume fraction to mass fraction.  相似文献   

3.
We present a model for the shear viscosity of non-colloidal suspensions with Newtonian matrix fluids. The model is based on the original idea first presented by Brinkman (Applied Sci Research A1:27-34. 1947) for the viscous force exerted by a flowing fluid on a dense swarm of spherical particles. In particular, we consider an inertialess suspension in which the mean flow is driven by a pressure difference, and simultaneously, the suspension is subject to simple shear. Assuming steady state, incompressibility and taking into account a resistance force which is generated due to the presence of the particles in the flow, the three-dimensional governing equations for the mean flow around a single spherical particle are solved analytically. Self-consistency of the model provides a relationship between the resistance parameter and the volume fraction of the solid phase. A volume, or an ensemble, averaging of the total stress gives the bulk properties and an expression for the relative (bulk) viscosity of the suspension. The viscosity expression reduces to the Einstein limit for dilute suspensions and agrees well with empirical formulas from the literature in the semi-dilute and concentrated regimes. Since the model is based on a single particle and its average interaction with the other particles is isotropic, no normal stress differences can be predicted. A possible method of addressing this problem is provided in the paper.  相似文献   

4.
In this paper we study the bulk stress of a suspension of rigid particles in viscoelastic fluids. We first apply the theoretical framework provided by Batchelor [J. Fluid Mech. 41 (1970) 545] to derive an analytical expression for the bulk stress of a suspension of rigid particles in a second-order fluid under the limit of dilute and creeping flow conditions. The application of the suspension balance model using this analytical expression leads to the prediction of the migration of particles towards the centerline of the channel in pressure-driven flows. This is in agreement with experimental observations. We next examine the effects of inertia (or flow Reynolds number) on the rheology of dilute suspensions in Oldroyd-B fluids by two-dimensional direct numerical simulations. Simulation results are verified by comparing them with the analytical expression in the creeping flow limit. It is seen that the particle contribution to the first normal stress difference is positive and increases with the elasticity of the fluid and the Reynolds number. The ratio of the first normal stress coefficient of the suspension and the suspending fluid decreases as the Reynolds number is increased. The effective viscosity of the suspension shows a shear-thinning behavior (in spite of a non-shear-thinning suspending fluid) which becomes more pronounced as the fluid elasticity increases.  相似文献   

5.
We report on the steady-state shear viscosity of suspensions of fibres dispersed in Newtonian fluids, in a wide range of volume fractions throughout the dilute and semi-dilute regimes. We show that the apparent shear-thinning behaviour, which is sometimes observed in the semi-dilute regime at intermediate shear rates, is an experimental artefact due to the presence of transient clusters of entangled fibres in the suspensions. At high shear rates, the fibres are aligned and the suspensions exhibit Newtonian behaviour. In this regime, the viscosity is a function of volume fraction and fibre aspect ratio only. The data can be rescaled onto a universal curve using a variable that accounts for the average contribution of the particles to the bulk stress. All these results are discussed in relation to recent theories. Received: 19 January 1999 Accepted: 17 June 1999  相似文献   

6.
We present data and predictive models for the shear rheology of suspended zeolite particles in polymer solutions. It was found experimentally that suspensions of zeolite particles in polymer solutions have relative viscosities that dramatically exceed the Krieger–Dougherty predictions for hard sphere suspensions. Our investigations show that the major origin of this discrepancy is due to the selective absorption of solvent molecules from the suspending polymer solution into zeolite pores. The effect raises both the polymer concentration in the suspending medium and the particle volume fraction in the suspension. Consequently, both the viscosity of the polymer solution and the particle contribution to the suspension viscosity are increased. We propose a predictive model for the viscosity of porous zeolite suspensions by incorporating a solvent absorption parameter, α, into the Krieger–Dougherty model. We experimentally determined the solvent absorption parameter by comparing viscosity data for suspensions of porous and nonporous MFI zeolite particles. Our results are in good agreement with the theoretical pore volume of MFI particles.  相似文献   

7.
It is shown that in a truly bimodal coal-water slurry the hydrodynamic interactions between the coarse particles impose on the fine fraction a shear rate higher than that applied externally by the viscometer walls. A semi-empirical function of the coarse volume fraction is obtained for this correction factor to the applied shear rate. The derivation of this shear correction factor is based on lubrication concepts and introduces the maximum packing fraction,ø m, at which flow can take place.ø m is obtainable from a simple dry packing experiment. It is shown that the contribution of the coarse particles to the viscosity rise can be successfully described by a viscosity model employing the same concepts used to derive the shear correction factor. The bimodal model is applied in the high shear limit to polymodal coal slurries with a continuous particle size distribution. In the model, the contribution of the coarse particles to the viscosity rise is taken from separate viscosity measurements for the coarse coal particles, while the contribution to the viscosity of the fine coal particles is taken to be that given by the measured viscosity of colloidal suspensions of monomodal rigid spheres. It is shown that there is a ratio of coarse to fine fraction volumes in the continuous size distribution, corresponding to a specific separating particle size, for which the measured viscosities of the polymodal slurries match almost perfectly over the whole solids volume fraction range with the viscosity values obtained using the bimodal approach. The match is found to be relatively insensitive to the precise value of the separating particle size.  相似文献   

8.
A simple kinetic model is presented for the shear rheology of a dilute suspension of particles swimming at low Reynolds number. If interparticle hydrodynamic interactions are neglected, the configuration of the suspension is characterized by the particle orientation distribution, which satisfies a Fokker-Planck equation including the effects of the external shear flow, rotary diffusion, and particle tumbling. The orientation distribution then determines the leading-order term in the particle extra stress in the suspension, which can be evaluated based on the classic theory of Hinch and Leal (J Fluid Mech 52(4):683–712, 1972), and involves an additional contribution arising from the permanent force dipole exerted by the particles as they propel themselves through the fluid. Numerical solutions of the steady-state Fokker-Planck equation were obtained using a spectral method, and results are reported for the shear viscosity and normal stress difference coefficients in terms of flow strength, rotary diffusivity, and correlation time for tumbling. It is found that the rheology is characterized by much stronger normal stress differences than for passive suspensions, and that tail-actuated swimmers result in a strong decrease in the effective shear viscosity of the fluid.  相似文献   

9.
An experimental study was conducted to measure the effective thermal conductivity of a sheared suspension of rigid spherical particles. The objective was to verify the theoretical prediction of Leal (1973) for a dilute suspension undergoing shear at low particle Peclet number, and to extend the range of the experiments to conditions beyond the scope of the theory. Surprisingly, reasonable agreement with the theoretical prediction was observed even for suspensions of moderate concentrations (volume fraction ≤ 0.25) and higher Peclet numbers [Pe 0(1)]. The trend of the data, however, verifies the obvious fact that the theory does not completely describe the transport behavior at higher concentrations and Peclet numbers. The range of quantitative applicability of Leal's result is apparently only for Pe < 0.01 and < 0.01, but the changes in the effective thermal conductivity in this domain were too small to be measured in our apparatus.  相似文献   

10.
We present analyses to provide a generalized rheological equation for suspensions and emulsions of non-Brownian particles. These multiparticle systems are subjected to a steady straining flow at low Reynolds number. We first consider the effect of a single deformable fluid particle on the ambient velocity and stress fields to constrain the rheological behavior of dilute mixtures. In the homogenization process, we introduce a first volume correction by considering a finite domain for the incompressible matrix. We then extend the solution for the rheology of concentrated system using an incremental differential method operating in a fixed and finite volume, where we account for the effective volume of particles through a crowding factor. This approach provides a self-consistent method to approximate hydrodynamic interactions between bubbles, droplets, or solid particles in concentrated systems. The resultant non-linear model predicts the relative viscosity over particle volume fractions ranging from dilute to the the random close packing in the limit of small deformation (capillary or Weissenberg numbers) for any viscosity ratio between the dispersed and continuous phases. The predictions from our model are tested against published datasets and other constitutive equations over different ranges of viscosity ratio, volume fraction, and shear rate. These comparisons show that our model, is in excellent agreement with published datasets. Moreover, comparisons with experimental data show that the model performs very well when extrapolated to high capillary numbers (C a?1). We also predict the existence of two dimensionless numbers; a critical viscosity ratio and critical capillary numbers that characterize transitions in the macroscopic rheological behavior of emulsions. Finally, we present a regime diagram in terms of the viscosity ratio and capillary number that constrains conditions where emulsions behave like Newtonian or Non-Newtonian fluids.  相似文献   

11.
Dimensional analysis of the motion of solid particles suspended in a fluid phase shows that the macroscopic relative shear viscosity of suspensions generally depends not only on the volume concentration and particle shape but also on two Reynolds numbers and a dimensionless sedimentation number. These dimensionless numbers are formed using parameters characterizing the structure and motion of the suspension at the microscopic level. The analysis was based on the assumptions that the dispersed particles are rigid and sufficiently large that Brownian motion may be neglected, that the continuous fluid phase is Newtonian and that the interactions between particles and between particles and fluid phase are only hydrodynamic. The Reynolds numbers describe the influence of the inertial forces at the microscopic level, and the sedimentation number the influence of gravity. The dimensionless numbers can be neglected if their values are much smaller than one. For each of the dimensionless numbers both the shear rate and the particle size influence the shear viscosity. Thus sedimentation number is large for low shear rates, whereas the Reynolds numbers are large for high shear rates. The viscosity function for one suspension can be transformed into the viscosity function for another suspension with geometrically similar particles but of a different size. The scale-up rules are derived from the requirement that the relevant dimensionless numbers must be constant. The influence of non-hydrodynamic effects at the microscopic level on the shear viscosity can be detected by deviations from the derived scale-up rules.  相似文献   

12.
The particle migration effects and fluid–particle interactions occurring in the flow of highly concentrated fluid–particle suspension in a spatially modulated channel have been investigated numerically using a finite volume method. The mathematical model is based on the momentum and continuity equations for the suspension flow and a constitutive equation accounting for the effects of shear‐induced particle migration in concentrated suspensions. The model couples a Newtonian stress/shear rate relationship with a shear‐induced migration model of the suspended particles in which the local effective viscosity is dependent on the local volume fraction of solids. The numerical procedure employs finite volume method and the formulation is based on diffuse‐flux model. Semi‐implicit method for pressure linked equations has been used to solve the resulting governing equations along with appropriate boundary conditions. The numerical results are validated with the analytical expressions for concentrated suspension flow in a plane channel. The results demonstrate strong particle migration towards the centre of the channel and an increasing blunting of velocity profiles with increase in initial particle concentration. In the case of a stenosed channel, the particle concentration is lowest at the site of maximum constriction, whereas a strong accumulation of particles is observed in the recirculation zone downstream of the stenosis. The numerical procedure applied to investigate the effects of concentrated suspension flow in a wavy passage shows that the solid particles migrate from regions of high shear rate to low shear rate with low velocities and this phenomenon is strongly influenced by Reynolds numbers and initial particle concentration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The rheological behaviour of suspensions is influenced by many parameters, one of which is the particle shape. For rigid particle suspensions a number of studies demonstrate the effects of the particle aspect ratio. Indeed, fibres are widely used as rheology modifiers in different materials such as synthetic polymers. This work is concerned with testing the hypothesis that regularly shaped particles with aspect ratios larger than one that are made of gelled biopolymers could be used as rheology modifiers for biopolymer solutions. Biopolymers, and mixtures thereof are a widely used ingredient in foods and other products with structure functionality. Tailoring rheology modifiers by morphology offers an alternative to using different biopolymers. It is demonstrated how biopolymer suspensions with regular spheroidal, or cylindrical particle shapes can be produced by gelling the droplet phase of a liquid two phase biopolymer mixture in a shear field. Biopolymers were chosen such that gelation is initiated by cooling. Shear-cooling at constant stresses leads to the formation of ellipsoidal particles. Cylindrical particles can be generated by stepping up the shear stress prior to gelation, i.e., stretching the droplet phase into fibrils, and trapping the shape prior to break-up through gelation. Morphologies and steady shear rheological data for suspensions of the two biopolymers gellan and κ-carrageenan with an internal phase volume of 0.2 are reported. The influence of particle shape on relative viscosity is pronounced. At high shear stresses particle orientation leads to decreased viscosity with increasing particle aspect ratio. In the low shear region, higher aspect ratio suspensions show higher viscosities. Additionally, the material properties, including the interfacial tension, which influence the suspension morphology are reported. Received: 3 March 2000 Accepted: 22 August 2000  相似文献   

14.
Viscosities of suspended particles in polymeric solutions depend upon dissolved polymer concentration, volume fraction of particles and shear rate. In this analysis of viscosity data, relative viscosity was defined as the ratio of suspension viscosity to solution viscosity at the same shear stress rather than shear rate. These relative viscosities reached asymptotic values at high shear stress for all concentrations of dissolved polymer and for all particle loadings. At a given particle loading, the asymptotic values of relative viscosity were nearly independent of the concentration of dissolved polymer. Realtive viscosities were correlated with volume fraction by the one-constant equation of Maron and Pierce.  相似文献   

15.
A three-dimensional study of suspension of drops in simple shear flow has been performed at finite Reynolds numbers. Results are obtained using a finite difference/front tracking method in a periodic domain. The effects of the Reynolds number and the Capillary number are addressed at two volume fractions: 0.195 and 0.34. It is observed that suspensions of deformable drops exhibit a shear-thinning behavior. Similar to the motion of a single drop, drops migrate away from the walls. The effective viscosity, the first and the second normal stress differences oscillate around a mean value in all cases. The first normal stress difference increases with the Capillary number, the Reynolds number and the volume fraction. Results show that drops deform more and orient more in the flow direction as the Capillary number or the volume fraction is increased. Also, the average size of clusters is smaller than for suspension of rigid particles. The radial dependence of the pair distribution function across the channel has been studied. This dependency shows that the tendency to form clusters is reduced as the Capillary number increases or the volume fraction decreases.  相似文献   

16.
The rheology of dilute, colloidal suspensions in polymeric suspending fluids can be studied with simultaneous dichroism and birefringence measurements. The dichroism provides a direct measure of the particle dynamics, but the birefringence is a composite property with independent contributions from the suspended particles and the polymer molecules. For suspensions where the contribution from the particles is significant, the composite birefringence must be decoupled in order to analyze the dynamics of the polymeric suspending fluid. A method to perform the decoupling is derived and then demonstrated through transient shear flow experiments with dilute suspensions ofFeOOH particles in semi-dilute, xanthan gum suspending fluids. The birefringence of the xanthan gum suspending fluid is calculated from experimental measurements of the composite birefringence and the dichroism of the suspension. To gather information on particle/polymer interactions, the calculated birefringence is compared to the birefringence of xanthan gum solutions containing no suspended particles and the dirchoism is compared to that of a suspension in a Newtonian fluid.  相似文献   

17.
This paper describes an experimental study on dispersions of monodisperse polystyrene (PS) spheres with a typical radius of 1 μm, dispersed in an electrolyte at high ionic strength, screening the electrostatic repulsion. These suspensions gelate at rest even at low volume fractions of PS particles. The density of the particles is matched with the solvent by using deuterium oxide for volume fractions φ≤0.117. Steady-state flow curves, viscosity as a function of shear rate, are measured and reported for 0.014<φ<0.322. The measured flow curves are analyzed on the basis of two models: 1. In the giant floc model (van Diemen and Stein 1983, 1984; Schreuder et al. 1986, 1987; Laven et al. 1988), at low shear rates, the shear is not distributed homogeneously but is limited to certain shear planes; the energy dissipation during steady flow is due primarily to overcoming the viscous drag on the suspended particles during motion caused by encounters of particles in the shear planes. Though this model was developed for higher solid volume fractions (0.35–0.425), we found that it also describes the rheology of dilute particle gels for 0.15≤φ≤0.3, using the same values for the parameters in the model as in the high solid volume fraction region. For φ<0.15, the model also describes the data if the fraction of distance by which a moving particle entrains its neighbors, is assumed to increase in this φ region. 2. The model of de Rooij (de Rooij et al. 1993, 1994) considers aggregates in shear flow to be monodisperse impermeable spheres with a fractal structure. The permeability is taken into account by considering a hydrodynamic radius smaller than the gyration radius in the Krieger-Dougherty expression for the hydrodynamic contribution to the viscosity. Through the use of a yield criterion the aggregate radius is modeled as a function of shear rate. We found that the model describes our experimental results, with a combination of parameter values used already by de Rooij, but only for φ<0.15. Received: 7 May 1998 Accepted: 22 December 1998  相似文献   

18.
The evolution of the microstructure and rheological properties of plate-like particle suspensions subjected to rapid simple shear is studied numerically. In response to the shear-induced strain, particles in the suspensions rearrange to form a steady-state microstructure, and the suspension viscosity reaches a steady value. Under this condition, the microstructure is composed of two domains having different particle fractions and particle orientations. In the matrix (particle-poor) and cluster (particle-rich) domains, the particles’ long axes are oriented subparallel to the shear plane and normal to the maximum compressive principal direction, respectively. A higher particle concentration and friction coefficient enhance the development of cluster domains relative to matrix domains leading the intensity of the preferred particle orientation to decrease and the number of contacting particles, the aspect ratio of clusters, the inter-particle force, and the suspension viscosity to increase. The domain microstructure is governed by two factors: (1) geometric relations between the particle orientation and the maximum compressive axes and (2) the magnitude of particle–fluid and particle–particle interactions. The first factor results in the coupling of the particle orientation and the local fraction of particles, which is an important character of the domain microstructure. The second factor controls the relative development of the cluster and matrix domains through the change in the particles’ rotational behavior. Our results suggest that the microstructure of plate-like suspensions subjected to rapid shear is predictable in terms of the cluster stability, which has important implications for the kinematics of flow-related microstructures in nature and manufacturing.  相似文献   

19.
Luo  Yimin  Lee  Yu-Fan  Dennis  Kimberly A.  Velez  Carlos  Brown  Scott C.  Furst  Eric M.  Wagner  Norman J. 《Rheologica Acta》2020,59(4):209-225

Dense colloidal suspensions are processed in a wide variety of industries. Challenges for pumping suspensions and slurries at high concentrations include shear thickening and dilation, which can have deleterious consequences. These systems are shear sensitive close to the jamming point, meaning that a significant increase in high shear viscosity can be observed with just a few percent change in volume fractions. Therefore, accurate and rapid determination of the jamming point can greatly aid formulation. Typically, conventional rheometry identifies the jamming point by a time-consuming process, whereby multiple flow curves of suspensions of different volume fraction are measured and extrapolated to the volume fraction where the viscosity diverges. We present an alternative approach for rapid, one-step, experimental determination of the jamming point for aqueous suspensions. The procedure monitors the shear stress under constant shear stress or shear rate as the sample is dewatered using immobilization cell rheometry, until the viscosity diverges. The method is validated by comparing the results of this work with conventional rheometry for a model suspension. Then it is applied to examine the effect of grafting a short-chain polymer to particles, comprising an industrial suspension of silica-coated titania. Polymeric coating of the particles increases the jamming concentration and mitigates shear thickening, qualitatively consistent with predictions from simulations.

A new method is designed to extract the jamming point of a suspension. The procedure monitors the effective viscosity under prescribed shear conditions as the suspension is dewatered using immobilization cell rheometry. The geometry moves down to accommodate solvent evaporation, until the viscosity diverges, and the jamming point is reached.

  相似文献   

20.
The rheological behavior of polymethylmethacrylate (PMMA) particles suspensions in glycerine–water mixtures has been investigated by means of steady and dynamic rheometry in this work. The shear rheology of these suspensions demonstrates a strong shear thickening behavior. The variations of shear viscosity with the volume fraction and ratios of glycerine to water are discussed. The effect of volume fraction can be qualitatively explained using a clustering mechanism, which attributes the phenomena to the formation of temporary, hydrodynamic clusters. The influence of interactions between glycerine–water mixtures and PMMA particles on shear thickening is investigated by varying the ratio of glycerine to water. In addition, the reversible and thixotropic properties of suspensions of PMMA dispersed in glycerine–water (3:1) mixtures are also investigated, and the results demonstrate the excellent reversible and thixotropic properties of PMMA particle suspensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号