首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 708 毫秒
1.
γ-Ray and peroxide-initiated additions of dimethylether to F-cyclobutene, F-cyclopentene, and F-cyclohexene give mixtures of cis- and trans- adducts in each case, with a clear preference for trans-addition with F-cyclobutene. Selective bromination of the adducts occurs but the position of chlorination depends dramatically on solvent. Fluorination with cobalt trifluoride is very efficient.  相似文献   

2.
Guanosine derivatives with a nucleophilic group at the 5' position (G-5') are oxidized by the Pt (IV) complex Pt( d, l)(1,2-(NH 2) 2C 6H 10)Cl 4 ([Pt (IV)(dach)Cl 4]). The overall redox reaction is autocatalytic, consisting of the Pt (II)-catalyzed Pt (IV) substitution and two-electron transfer between Pt (IV) and the bound G-5'. In this paper, we extend the study to improve understanding of the redox reaction, particularly the substitution step. The [Pt (II)(NH 3) 2(CBDCA-O,O')] (CBDCA = cyclobutane-1,1-dicarboxylate) complex effectively accelerates the reactions of [Pt (IV)(dach)Cl 4] with 5'-dGMP and with cGMP, indicating that the Pt (II) complex does not need to be a Pt (IV) analogue to accelerate the substitution. Liquid chromatography/mass spectroscopy (LC/MS) analysis showed that the [Pt (IV)(dach)Cl 4]/[Pt (II)(NH 3) 2(CBDCA-O,O')]/cGMP reaction mixture contained two Pt (IV)cGMP adducts, [Pt (IV)(NH 3) 2(cGMP)(Cl)(CBDCA-O,O')] and [Pt (IV)(dach)(cGMP)Cl 3]. The LC/MS studies also indicated that the trans, cis-[Pt (IV)(dach)( (37)Cl) 2( (35)Cl) 2]/[Pt (II)(en)( (35)Cl) 2]/9-EtG mixture contained two Pt (IV)-9-EtG adducts, [Pt (IV)(en)(9-EtG)( (37)Cl)( (35)Cl) 2] and [Pt (IV)(dach)(9-EtG)( (37)Cl)( (35)Cl) 2]. These Pt (IV)G products are predicted by the Basolo-Pearson (BP) Pt (II)-catalyzed Pt (IV)-substitution scheme. The substitution can be envisioned as an oxidative addition reaction of the planar Pt (II) complex where the entering ligand G and the chloro ligand from the axial position of the Pt (IV) complex are added to Pt (II) in the axial positions. From the point of view of reactant Pt (IV), an axial chloro ligand is thought to be substituted by the entering ligand G. The Pt (IV) complexes without halo axial ligands such as trans, cis-[Pt(en)(OH) 2Cl 2], trans, cis-[Pt(en)(OCOCF 3) 2Cl 2], and cis, trans, cis-[Pt(NH 3)(C 6H 11NH 2)(OCOCH 3) 2Cl 2] ([Pt (IV)(a,cha)(OCOCH 3) 2Cl 2], satraplatin) did not react with 5'-dGMP. The bromo complex, [Pt (IV)(en)Br 4], showed a significantly faster substitution rate than the chloro complexes, [Pt (IV)(en)Cl 4] and [Pt (IV)(dach)Cl 4]. The results indicate that the axial halo ligands are essential for substitution and the Pt (IV) complexes with larger axial halo ligands have faster rates. When the Pt (IV) complexes with different carrier ligands were compared, the substitution rates increased in the order [Pt (IV)(dach)Cl 4] < [Pt (IV)(en)Cl 4] < [Pt (IV)(NH 3) 2Cl 4], which is in reverse order to the carrier ligand size. These axial and carrier ligand effects on the substitution rates are consistent with the BP mechanism. Larger axial halo ligands can form a better bridging ligand, which facilitates the electron-transfer process from the Pt (II) to Pt (IV) center. Smaller carrier ligands exert less steric hindrance for the bridge formation.  相似文献   

3.
The (hydroxo) methyl complex Pt(OH)(CH3)(Diphos) [Diphos = Ph2PCH2CH2PPh2] reacts with compounds containing acidic CH bonds (HX) to give unsymmetrical cis-dialkyls of general formula Pt(CH3)X(Diphos) [X = CH2COCH3, CH(COCH3)2, CH2CN or CH2NO2]; both the methyl and the cyclohexenyl complexes Pt(OH)R(Diphos) (R = CH3 or C6H9) insert carbon monoxide to give hydroxycarbonyl complexes PtR(CO2H)(Diphos) which are remarkably stable to decomposition by β-elimination.  相似文献   

4.
5.
6.
7.
8.
Both platinum(II) and the total amount of platinum were determined in the 5-μmole range with a precision of 0.3%. First, platinum(II) was determined dy oxidation with electrogenerated bromine,the equivalent quantity of electricity being measured. After reduction to platinum(II) with electrogenarated tin(II), the total amount of platinum was determined by a second oxidation with electrogenerated bromine.The reduction with tin(II) was too slow for manual control, and an electronic coulometric titrator was used.The construction of the tritator is described. The underlying coulometric principle, called controlled-reagent coulometry, and its adventages are discussed. A number of other substances were also tested.  相似文献   

9.
10.
11.
12.
13.
Hydrogen peroxide oxidation of platinum(II) compounds containing labile groups such as Cl, OH, and alkene moieties has been carried out and the products characterized. The reactions of [PtII (X)2 (N–N)] (X = Cl, OH, X2 = isopropylidenemalorate (ipm); N–N 2,2-dimethyl-1,3-propanediamine [(dmpda), N-isopropyl-1,3-propanediamine (ippda)] with hydrogen peroxide in an appropriate solvent at room temperature affords [PtIV (OH)(Y)(X)2(N–N)] (Y = OH, OCH3). The crystal structures of [PtIV(OH)(OCH3)(Cl)2(dmpda)]·2H2O (P-1 bar, a = 6.339(2) Å , b = 9.861(1) Å, c = 11.561(1) Å, a = 92.078(9)°, β = 104.78(1)°, γ=100.54(1)°, V = 684.3(2) Å3, Z = 2R = 0.0503) and [PtIV(OH)2(ipm)(ippda)]·3H2O (C 2/c, a = 27.275(6) Å, b=6.954(2) Å, c = 22.331(4) Å, β = 118.30(2)°, V = 3729(2) Å3, Z = 8, R = 0.0345) have been solved and refined. The local geometry around the platinum(IV) atom approximates to a typical octahedral arrangement with two added groups (OH and OCH3; OH and OH) in a transposition. The platinum(IV) compounds with potential labile moieties may be important intermediate species for further reactions.  相似文献   

14.
15.
16.
17.
18.
19.
Photolysis of dimethylsulfoxide (dmso) solutions of the compound Pt(en)Cl2, where en=ethylene-1,2-diamine, leads to solvolysis of the complex and formation of Pt(en)(dmso)Cl+. The reaction follows clean pseudo-first-order kinetics with parallel photolytically activated and thermally activated paths. Both paths are first-order in both Pt(en)Cl2 and solvent. Eyring analysis of the rate constants for 25 °C≤T≤55 °C yielded a Gibbs energy of activation of 96 kJ mol−1 for the thermal pathway and no measurable activation barrier for the photochemical pathway. The quantum yield for the photochemical path is 0.22, as determined using ferrioxalate actinometry.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号