首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We describe the organocatalytic depolymerization of poly(ethylene terephthalate) (PET), using a commercially available guanidine catalyst, 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD). Postconsumer PET beverage bottles were used and processed with 1.0 mol % (0.7 wt %) of TBD and excess amount of ethylene glycol (EG) at 190 °C for 3.5 hours under atmospheric pressure to give bis(2‐hydroxyethyl) terephthalate (BHET) in 78% isolated yield. The catalyst efficiency was comparable to other metal acetate/alkoxide catalysts that are commonly used for depolymerization of PET. The BHET content in the glycolysis product was subject to the reagent loading. This catalyst influenced the rate of the depolymerization as well as the effective process temperature. We also demonstrated the recycling of the catalyst and the excess EG for more than 5 cycles. Computational and experimental studies showed that both TBD and EG activate PET through hydrogen bond formation/activation to facilitate this reaction. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
The rate of nucleophilic substitution at the phosphorus centre of dialkyl methylphosphonates by methoxide and ethoxide has been studied to investigate the possible involvement of hexacoordinated phosphorus species in this reaction. For alkoxide concentrations less than ca. 1.5 M the rate increases with the square of alkoxide concentration. However, consideration of the activity of the alkoxides, represented by an appropriate acidity function, reveals that only one equivalent of alkoxide is involved in the rate-determining step. Thus, there is no requirement to invoke the intermediacy of a hexacoordinated species in the reaction pathway. © John Wiley & Sons, Inc.  相似文献   

3.
The treatment of silylglyoxylates with magnesium alkoxides at ambient temperature results in symbiotic Oppenauer oxidation of the alkoxide and Meerwein-Ponndorf-Verley reduction of the silylglyoxylate. The reduced silylglyoxylate undergoes subsequent [1,2]-Brook rearrangement and aldol reaction with the carbonyl oxidation product. The magnesium alkoxide may be accessed via deprotonation of primary or secondary alcohols with EtMgBr, via addition of Grignard reagents to aldehydes, or via CuI-catalyzed alkylation of epoxides. For aliphatic primary alkoxides, moderate levels of anti diastereoselection are observed. A crossover experiment reveals that dissociation of the nascent aldehyde from the magnesium center is faster than [1,2]-Brook rearrangement and aldolization.  相似文献   

4.
The iron-catalyzed Kirmse reaction was used to generate neopentyl alpha-silyl thioethers that were elaborated to meroterpenes using two complementary routes: one route involved a sila-Pummerer rearrangement, and the other route involved a Peterson olefination. While severe eclipsing interactions undermined the efficiency of the stereospecific sila-Pummerer rearrangement, they made it possible to stereoselectively generate E olefins without isolation or separation of syn- and anti-beta-silyl alkoxides. Addition of a neopentyl alpha-silyl alkyllithium intermediate to an aryl aldehyde generated a mixture of syn- and anti-beta-silyl alkoxides. The syn-beta-silyl alkoxide eliminated stereospecifically at -78 degrees C to give an E olefin, whereas the anti-beta-silyl alkoxide was unreactive. The reaction mixture was then acidified and heated to induce stereospecific elimination of the anti isomer to give the same E olefin via a complementary cationic pathway. This route was used to complete the first synthesis of the meroterpene (+/-)-3-hydroxybakuchiol. In addition, we synthesized another meroterpene corresponding to the natural product corylifolin and offer evidence that the structure of corylifolin was misassigned.  相似文献   

5.
Phenyl glycidyl ether was found to react with potassium starch alkoxide in dimethyl sulfoxide (DMSO) to give graft polymers in almost quantitative yields, both the monomer and the starch being incorporated completely into the graft polymer. No transfer reactions to monomer or solvent leading to homopolymerization was found. For this reason this system was used as a model for the study of the rate of the graft polymerization of alkylene oxides on starch and other carbohydrates. Comparison of the rates of the graft polymerization of phenyl glycidyl ether on starch alkoxide with that of the homopolymerization by potassium naphthalene in DMSO under comparable conditions showed that the former reaction was much slower. Rates of the graft polymerizations on dextrin and sucrose under comparable conditions, were similar to those obtained with starch. On the other hand, the rates of polymerization on poly(ethylene oxide) alkoxides of different molecular weights were similar to those obtained in the corresponding homopolymerization by potassium naphthalene, showing that neither the molecular weight of the initiator nor the viscosity of the reaction medium were the governing factors. This suggested that the lower rates obtained by using the carbohydrate alkoxides as initiators were connected with the heterogeneity of these reaction systems, the polymeric alkoxide being insoluble in DMSO. The systematic study carried out on the homopolymerization by potassium naphthalene in DMSO showed that the effective initiator was dimsyl anion obtained by interaction of potassium naphthalene with DMSO. The reaction was bimolecular, being first order to monomer and to initiator. The molecular weights increased with increasing monomer concentration and decreasing catalyst concentration, in accordance with a “living” polymerization system.  相似文献   

6.
本文对微波作用下PET的中性水解解聚反应中原料结晶度的影响进行了研究.  相似文献   

7.
Reactions of α-lithioisobutyric acid esters were studied as models of partial reaction taking place during anionic polymerization of methacrylate esters. The rates of selfcondensation reactions and condensations with nonmetalated esters were determined for these models. In both cases ketoesters were the final products. Besides esters of α,α,α′-trimethylglutaric acid expected according to Michael's reaction scheme the addition of methacrylate esters to α-lithio esters also yielded oligomeric compounds due to repeated addition of methacrylate esters. The α-lithio oligomers of methacrylate esters underwent cyclization condensation which gave rise to esters of substituted cyclohexanonedicarboxylic acids. The alkali metal alkoxides slowed down all the condensation reactions of α-lithio esters investigated here. Such effect of alkoxides also appeared in the cyclization condensation of compounds formed by repeated addition of methacrylate esters, because in the presence of alkoxides the reaction mixture contained a higher amount of higher molecular weight compounds than in a system without alkoxide. The effect of alkoxides observed here is in accordance with the view that the cyclization condensation is one of the termination reactions of the anionic polymerization of methacrylate esters.  相似文献   

8.
Structural investigations on the hydrolysis and condensation behavior of germanium alkoxides were for the first time performed by means of X-ray absorption fine structure and Raman spectroscopy. The studies reveal that germanium alkoxides are monomeric in nature and undergo very fast hydrolysis and condensation reactions upon water addition. However, the chelation of germanium alkoxides by acetylacetone does not take place even 48 h after mixing, and any change in hydrolysis and condensation behavior is not observed after acetylacetone addition. When mixed with prehydrolyzed silicon alkoxide, the structures of germanium alkoxides are not modified. Both Si and Ge precursors are insensitive to the presence of each other in the reaction solution even after 48 h of aging. The addition of water to this mixture catalyzes the hydrolysis and condensation reactions very fast and leads to the formation of Ge-O-Ge (and consequently Si-O-Si) homocondensation products.  相似文献   

9.
Depolymerization of poly(ethylene terephthalate) (PET) was performed in the tubular bomb microreactor which contained the solution of PET in methanol and dibutyltin oxide at the temperature ranging from 433 K to 473 K, the reaction time from 5 to 45 min and the catalyst-to-PET ratio of 0.3%-2% by weight. The optimal condition for PET depolymerization catalyzed by dibutyltin oxide is the temperature of 443-453 K, the reaction time of 20-25 min and 0.8% by weight of catalyst. By using differential methods, the activation energy for the depolymerization process was found to be 154.05 kJ/mol in the temperature range from 433-463 K.  相似文献   

10.
A series of terminal tin(II) alkoxides have been synthesized utilizing the bulky β-diketiminate ligand [{N(2,6-(i)Pr(2)C(6)H(3))-C(Me)}(2)CH] (BDI). The nucleophilicities of these alkoxides have been examined, and unexpected trends were observed. For instance, (BDI)SnOR only reacts with highly activated aliphatic electrophiles such as methyl triflate, but reacts reversibly with carbon dioxide. Both the rate of reaction and the degree of reversibility is dependent upon minor changes in the alkoxide ligand, with the bulkier tert-butoxide ligand displaying slower reactivity than the corresponding isopropyl ligand, although the latter system is a more exergonic reaction. Density Function Theory (DFT) calculations show that the differences in the reversibility of carbon dioxide insertion can be attributed to the ground-state energy differences of tin alkoxides while the rate of reaction is attributed to relative bond strengths of the Sn-O bonds. The mechanism of carbon dioxide insertion is discussed.  相似文献   

11.
Barium titanate (BaTiO3)/polymer composite was successfully synthesized by methacryltriisopropoxytitanium (MTPT) and barium alkoxide. MTPT undergoes radical polymerization using azobisisobutyronitrile at temperatures from 90 to 150°C. 1H NMR spectra showed that MTPT reacted with barium alkoxides yielding a complex alkoxide. BaTiO3 particles/polymer was formed after the polymerization and hydrolysis of the complex alkoxide. The transmission electron microscopic observation revealed that crystalline BaTiO3 particles of around 3 nm in size were dispersed in the polymer matrix.  相似文献   

12.
The anionic polymerization of propylene oxide (PO) initiated by alkali metal alkoxides is in non polar solvents a very slow and non controlled reaction process. Transfer reaction to monomer is predominant, allowing only the preparation of low molar masses PPO. The influence of the addition of trialkylaluminium to either an alkali metal alkoxide or a tetraalkylammonium salt used as initiator for PO polymerization in hydrocarbon media was investigated. A strong enhancement of the polymerization rate accompanied by a drastic decrease of the transfer reactions is observed, allowing the synthesis of PPO with well controlled molar masses. At constant monomer and alkali metal alkoxide concentrations, the polymerization rate increases with increasing trialkylaluminium concentration. Results indicate that the trialkylaluminium derivative is involved in the formation of two distinct complexes, one with the alkali metal alkoxide or the tetraalkylammonium salt and another one with the PO monomer which is strongly activated towards nucleophilic active species. Significant differences between the alkali metal and tetraalkylammonium based initiators are observed. In particular much less trialkylaluminum activator is needed with the ammonium salt to get the same rate of propagation and controlled polymerization.  相似文献   

13.
The RAPET reaction at 700 degrees C, of different alkoxides (Ti, V, and Si) led to three different nanocomposites. Carbon is the element common to all three structures. Carbon was found as the core in the decomposition of TEOS, as the shell in the decomposition of VO(OEt)3 and embedded in, or mixed completely with, TiO2 in the decomposition of Ti(OiPr)4. This novel method using only metallic alkoxide precursor, in the absence of catalyst, leads in a one-step process to core-shell structures.  相似文献   

14.
The chemical recycling of waste poly(ethylene terephthalate) (PET) using castor oil (CO) as a reagent is reported. CO presents a renewable alternative to petrochemical based reagents, e.g. glycols, and enables also substantial modification of final physico-chemical properties of a received product. Advantageously, microwave irradiation was used to accelerate the depolymerization of PET. A composition of obtained product was strongly influenced by the reaction temperature. When the decomposition of PET was performed at temperature higher than 240 °C, then a significant extent of side products based on PET oligomers and transesterified CO was observed due to dehydration and hydrolysis of CO. Contrary to that, PET decomposition took place at slow rate below 230 °C and the optimal reaction temperature lies in the relatively narrow interval from 230 °C to 240 °C. The product prepared in the optimal temperature range did not contain any high molecular weight PET oligomers. MALDI-TOF mass spectrometry enabled to identify the structures included in the obtained polyol product. The maximum number of six repeating monomeric unit of PET was found in the product, which confirmed practically the complete depolymerization of PET chain and good reactivity of the acylester hydroxyl groups of CO.  相似文献   

15.
Transesterification reactions and proton exchange reactions between acetate enolates and alcohols were studied both separately and together. Kinetic analysis shows that transesterification and proton exchange happen in a single collision event. The transesterification reaction is best viewed as an endothermic proton transfer, followed by an exchange of alkoxide and an exothermic proton transfer. Reaction barriers were modeled by Rice-Ramsperger-Kassel-Marcus theory and compared to quantum calculations. CBS-QB3 achieves good agreement whereas B3LYP and MP2 give slightly higher barriers. Quantum calculations also predict that the transition state for these transesterification reactions is the same as that for direct transesterification reactions between alkoxides and esters.  相似文献   

16.
The chemical reactions underlying the formation of a water based alkoxide sol gel process for lead zirconate titanate thin films using solutions of Ti and Zr alkoxides are outlined. Titanium isopropoxide and zirconium propoxide are chemically modified by acetic acid in order to use water as a solvent. The nature of the hydrolysis reactions in the presence of acetic acid is reviewed. It is shown that the formation of ions and charged polymeric species reduces their rates of condensation and aggregation.  相似文献   

17.
A. Calderon  J. Font  R.M. Ortun¯o 《Tetrahedron》1984,40(19):3787-3794
Protoanemonin, reacts in different ways with thiolate and alkoxide anions. Thus, while the very soft nucleophile benzenethiolate attacks exclusively the olefinic carbons of 1, alkoxides always attack the carbonyl group in the first step of the reaction. In intermediate cases, when neither very hard nor very soft nucleophiles are used, regioselectivity is not observed. Mechanisms are discussed to explain this differential reactivity.  相似文献   

18.
Transesterification reactions of acyclic oligoether esters E3-E10 with metal alkoxides were accelerated upon noncovalent complexation of the esters with metal ions. In the reaction of monovalent alkaline metal alkoxides, CH(3)ONa and CH(3)OK, plots of the observed rate constants k(obs) with respect to the chain length of E3-E10 showed selective acceleration of the transesterification. Compared with the shortest E3, which can hardly bind metal ion, 4.3- and 6.6-fold accelerations in the maxima were achieved in the combinations of E5/CH(3)ONa and E6/CH(3)OK, respectively. Supramolecular intermediate complex could be spectrometrically visualized by ESI-FT-ICR-MS in the course of reaction. Kinetic experiments, together with structural analyses by means of NMR, mass spectrometry, and DFT calculations of the intermediate complexes, indicate that a size-fit complex of host substitute with alkali metal ion allows strong electron withdrawing due to the close contact of the carbonyl oxygen to the metal ion, resulting in the selective rate enhancement of the reaction, while in the reaction of E3-E10 with a divalent alkaline earth metal alkoxide, (CH(3)CH(2)O)(2)Ba, the k(obs) values increased stepwise with elongation of the side arm to attain an dramatic large acceleration. In comparison with the k(obs) of E3, 4610-fold acceleration was achieved in the reaction of E10. The double activation of the host substrate and guest counter nucleophile at once brings about this extraordinary rate acceleration. The strong wrapping complexation of long oligoether ester with barium ethoxide allows for the effective electron withdrawal from the ester carbonyl group (host activation) as well as separation of the accompanying guest alkoxide anions (guest activation).  相似文献   

19.
The polymerization of 2-ethylhexyl acrylate (EtHA) initiated with lithium-tert-butoxide (t-BuOLi) in tetrahydrofuran (THF) and in the temperature range between ?60 and 20°C was investigated. The reaction rate is distinctly temperature-dependent and at ?60°C is already very low, similarly to the polymerization of methacrylates. Molecular weights of the polymers thus formed, particularly at higher temperatures, are inversely proportional to conversion of the monomer due to the slow initiation reaction. This is documented by the low consumption of alkoxide even at long reaction times, which also depends on the reaction temperature. At higher temperatures the polymerization stops spontaneously, due to the greater extent of autotermination reactions. The weak initiating efficiency of the alkoxide decreases still more with decreasing concentration of the monomer during the polymerization, as confirmed by the concentration dependence of the reaction rate in toluene at ?20°C. The results suggest a negligible initiating effect of alkoxides in complex bases, particularly at lower polymerization temperatures. © 1992 John Wiley & Sons, Inc.  相似文献   

20.
Alkali metal alkoxides are widely used in chemistry due to their Brønsted basic and nucleophilic properties. Potassium alkoxides assist alkyllithium in the metalation of hydrocarbons in Lochmann-Schlosser-bases. Both compounds form mixed aggregates, which enhance the thermal stability, solubility, and the basic reactivity of these mixtures. A very unusual spherical mixed alkoxy aggregate was discovered by Grützmacher et al., where a central dihydrogen phosphide anion is surrounded by a highly dynamic shell of thirteen sodium atoms and a hull of twelve tert-butoxide groups. This structural motif can be reproduced by a reaction of trimethylsilyl compounds of methane, halogens, or pseudo-halogens with excess sodium tert-butoxide. A nucleophilic substitution releases the corresponding anion, which is then encapsulated by the sodium alkoxide units. The compounds are soluble in hydrocarbon solvents, enabling studies of solutions by high-resolution NMR spectroscopy and IR/Raman studies of the crystalline materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号