首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Kinetic degradation of Ponceau 6R dye using oxidation with ammonium persulfate (APS) as oxidant, and catalyzed by electro, photo, and photo-electro at pH 1.0 was investigated. Ammonium persulfate (APS) proved to be a better oxidant of dye with photoelectrocatalytic degradation (PECD). The influence of various pH of the solution on the efficiency of degradation of dye was investigated. The results were observed that the dye decolorization was enhanced using PECD at pH 2.0. The rate of degradation of dye with APS followed pseudo-first order kinetics in the dye concentration. Also, it can be seen that increasing the concentration of oxidant (APS) led to a higher rate of dye decolorization.  相似文献   

2.
The surface of porous silica particles was modified with poly(acrylic acid) by reacting the carboxyl groups on poly(acrylic acid) with the amino groups of pregrafted aminopropyltriethoxysilane (APS). The chemical modifications by APS and polymer were characterized by infrared spectroscopy and the amount of APS and poly(acrylic acid) grafted to the surface were determined by thermal gravimetric analyses. The wettability of the modified silica particles, based on the rate of water penetration, was pH‐dependent with PAA; at pH 1.5 the wettability increased but at pH 5.5 it decreased dramatically. The pore size and size distribution of the silica particles decreased with APS and polymer grafting. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
The kinetic study on the oxidation of aniline with o- and p-nitroaniline by ammonium persulfate (APS) has been carried out. The course of copolymerization was investigated by UV-vis spectroscopy and structural characterization was studied by FTIR spectral analysis. The electronic spectra of the copolymers poly(aniline-co-p-nitroaniline) and poly(aniline-co-o-nitroaniline) show hypsochromic shift. The shift has been observed in the bands corresponding to π → π? transition as well as in the exciton transition. The presence of nitro-group not only affects the oxidative polymerization window but also brings about the remarkable changes in the optical and electronic properties of parent polymer polyaniline. The poly(aniline-co-nitroaniline) has been shown multiple color transition (yellow → lightgreen → darkgreen) as the pH of the system changes with progress of polymerization reaction. The increase in absorbance recorded at various time intervals with increasing concentration of aniline, o- and p-nitroaniline, which indicates the growth of polymer formation. The first order kinetics is suggested as the degradation curve is consistent well byan exponential decay of APS. The resulting first-order rate constant was used to calculate the rate of poly(aniline-co-nitroaniline) formation using the rate equation –d[A]/dt = kcn. The reaction shows first-order dependence for each reactant.  相似文献   

4.
Different compositions of poly(methyl methacrylate-co-methyl acrylate) (PMMAMA), poly(methyl methacrylate-co-ethyl acrylate) (PMMAEA) and poly(methyl methacrylate-co-butyl acrylate) (PMMABA) copolymers were synthesized and characterized. The photocatalytic oxidative degradation of all these copolymers were studied in presence of two different catalysts namely Degussa P-25 and combustion synthesized titania using azobis-iso-butyronitrile and benzoyl peroxide as oxidizers. Gel permeation chromatography (GPC) was used to determine the molecular weight distribution of the samples as a function of time. The GPC chromatogram indicated that the photocatalytic oxidative degradation of all these copolymers proceeds by both random and chain end scission. Continuous distribution kinetics was used to develop a model for photocatalytic oxidative degradation considering both random and specific end scission. The degradation rate coefficients were determined by fitting the experimental data with the model. The degradation rate coefficients of the copolymers decreased with increase in the percentage of alkyl acrylate in the copolymer. This indicates that the photocatalytic oxidative stability of the copolymers increased with increasing percentage of alkyl acrylate. From the degradation rate coefficients, it was observed that the photocatalytic oxidative stability follows the order PMMABA > PMMAEA > PMMAMA. The thermal degradation of the copolymers was studied by using thermogravimetric analysis (TGA). The normalized weight loss and differential fractional weight loss profiles indicated that the thermal stability of the copolymer increases with an increase in the percentage of alkyl acrylate and the thermal stability of poly(methyl methacrylate-co-alkyl acrylate)s follows the order PMMAMA > PMMAEA > PMMABA. The observed contrast in the order of photostability and thermal stability of the copolymers was attributed to different mechanisms involved for the scission of polymer chain and formation of different products in both the processes.  相似文献   

5.
The effect of 60Co γ-irradiation on aqueous solutions of poly(N-vinyl-2-pyrrolidone) (PVP) in the presence of persulfate anion has been investigated. The gelation dose of PVP and persulfate containing PVP aqueous solutions has been determined. At low concentrations of persulfate (1.00–3.50%), gelation percentages exhibited a decreasing trend by increasing persulfate content in aqueous solutions of the polymer. The gelation doses of persulfate containing polymer solutions were calculated by the Charlesby–Pinner equation. It was observed that the gelation dose values were shifted to higher values by increasing persulfate concentration in solution. The ratio of the chain scission and crosslinking yields (G(s)/G(x)) was also determined. The results showed that the G(s)/G(x) ratios were smaller than one for PVP aqueous solution system, whereas those obtained for persulfate containing PVP aqueous solutions were higher than unity. The results implied that the chain scission of polymer is more effective than crosslinking in the presence of persulfate. Mechanism of the crosslinking and/or degradation and structure–property relationship of PVP and PVP/persulfate hydrogel systems were investigated by Fourier transformation infeared and thermal analysis (differential scanning calorimetry, thermal gravimetric analysis and differential thermai analysis) methods.  相似文献   

6.
在活性炭(Ac)存在的情况下通过自由基溶液聚合,以过硫酸铵为引发剂,N,N′-亚甲基双丙烯酰胺为交联剂,制备了活性炭复合聚丙烯酸凝胶(PAA/AC)。 考察了凝胶在蒸馏水、生理盐水和不同pH值缓冲溶液中的平衡溶胀比以及溶胀动力学,结果表明,活性炭能有效提高凝胶的平衡溶胀比,在实验设计的pH值范围内复合凝胶具有比PAA凝胶更高的平衡溶胀比,蒸馏水和生理盐水中PAA/AC凝胶的平衡溶胀比分别可达到303和60 g/g,约为PAA凝胶的2.4倍。 讨论了凝胶的溶胀机理,结果表明,活性炭成分的介入破坏了聚合物链段之间的聚集态结构,减弱了聚合物链段之间的相互作用,提高了凝胶的溶胀能力。 示差扫描量热仪测定复合前后凝胶的玻璃化转变温度,扫描电子显微镜观察了复合前后凝胶的断面网络结构,结果进一步表明活性炭复合后聚合物链段之间的作用力减弱。  相似文献   

7.
The semicontinuous emulsion copolymerization of vinyl acetate and butyl acrylate (VAc/BuA) (85:15) initiated by thermal initiators ammonium persulfate (APS) and potassium persulfate (PPS) at 70°C in the presence of nonylphenol ethoxylates of varying chain lengths (NP-n) and acrylamide partially polymerized (Amol) was investigated. VAc-BuA copolymer latexes were synthesized as two different series in the glass reactor, in the first serie was initiated by APS and PPS was used as initiator in the second serie. The influence of the counterions or initiators and chain lenghts of non-ionic emulsifier on the properties of VAc-BuA copolymer latexes were determined by measuring Brookfield viscosities, weight average molecular weights (w), number average molecular weights (w), molecular weight distribution and surface tension of latexes to air. The results of copolymer latexes indicated that their physicochemical properties increased with the increasing chain length of nonionic emulsifier for two initiators.  相似文献   

8.
Glass beads were etched with acids and bases to increase the surface porosity and the number of silanol groups that could be used for grafting materials to the surfaces. The pretreated glass beads were functionalized using 3‐aminopropyltriethoxysilane (APS) coupling agent and then further chemically modified by reacting the carboxyl groups of carboxylic acid polymers with the amino groups of the pregrafted APS. Several carboxylic acid polymers and poly(maleic anhydride) copolymers, such as poly(acrylic acid) (PAA), poly(methacrylic acid) (PMA), poly(styrene‐alt‐maleic anhydride) (PSMA), and poly(ethylene‐alt‐maleic anhydride) (PEMA) were grafted onto the bead surface. The chemical modifications were investigated and characterized by FT‐IR spectroscopy, particle size analysis, and tensiometry for contact angle and porosity changes. The amount of APS and the different polymer grafted on the surface was determined from thermal gravimetric analysis and elemental analysis data. Spectroscopic studies and elemental analysis data showed that carboxylic acid polymers and maleic anhydride copolymers were chemically attached to the glass bead surface. The improved surface properties of surface modified glass beads were determined by measuring water and hexane penetration rates and contact angle. Contact angles increased and porosity decreased as the molecular weights of the polymer increased. The contact angles increased with the hydrophobicity of the attached polymer. The surface morphology was examined by scanning electron microscopy (SEM) and showed an increase in roughness for etched glass beads. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The oxidative matrix polymerization of pyrrole (Py) by Ce(IV) in the presence of Polyacrylic acid (PAA) has been studied to obtain water-soluble and insoluble products. The role of the PAA, Pyrrole, and Ce(IV) concentration, order of component addition, the structure of polymer matrix (PAA, Hydroxy Ethyl Cellulose (HES), Poly-N-vinylpyrrolidone (PVP)], and model unit of PAA (propionic acid), on the polymerization system were investigated. Interaction of PAA with insoluble polypyrrole (PPy) and the interpolymer complex formation were investigated along with the aggregation of PPy onto the matrix polymer followed by spectral shifts. FTIR results of insoluble products obtained from the PAA–Py–Ce(IV) system and solubility of the system is explained in light of the mechanism of the polymerization of pyrrole on the polymer matrix. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
A series of granulated semi‐interpenetrating polymer network (semi‐IPN) superabsorbent hydrogels composed of chitosan‐g‐poly(acrylic acid) (CTS‐g‐PAA) and poly(vinyl alcohol) (PVA) were prepared by solution polymerization using ammonium persulfate (APS) as an initiator and N,N′‐methylenebisacrylamide (MBA) as a crosslinker. The effects of reaction conditions such as the concentration of MBA, the weight ratio of AA to CTS, and the content of PVA on water absorbency were investigated. Infrared (IR) spectra and differential scanning calorimetry (DSC) analyses confirmed that AA had been grafted onto CTS backbone, and PVA semi‐interpenetrating into CTS‐g‐PAA networks. SEM analyses indicated that CTS‐g‐PAA/PVA has improved porous surface and PVA was uniformly dispersed in CTS‐g‐PAA network. The semi‐IPN hydrogel containing 10 wt% PVA shows the highest water absorbency of 353 and 53 g g?1 in distilled water and 0.9 wt% NaCl solution, respectively. Swelling behaviors revealed that the introduction of PVA could improve the swelling rate and enhance the pH stability of the superabsorbent hydrogel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Nanofibrillated cellulose (NFC) was compounded with poly(acrylic acid) (PAA) via solvent casting. Nanocomposite films were thermally-crosslinked to allow the formation of ester bonds between NFC and PAA, as confirmed by 13CNMR and infrared spectroscopy. The network morphology of the cellulose nanofibrils was left intact by the introduction of PAA and crosslinking. Water absorption and swelling was diminished by the introduction of crosslinking, due to the reduced number of vacant hydroxyl and carboxyl groups available to interact with water molecules. Crosslinking with PAA increased the activation energy required for thermal degradation. PAA effectively reinforced NFC, increasing Young’s modulus, tensile strength and glass transition temperature. Crosslinking imparted restraints on segmental motion of polymer chains, further enhancing the thermomechanical properties and retaining elasticity. Wet-strength properties were enhanced due to the reduced hydrophilicity of crosslinked nanocomposite films.  相似文献   

12.
和橡胶类树脂进行共混是聚丙烯(PP)改性的重要途径之一,共混有橡胶组分的PP改性树脂在其力学性能获得改进的同时,其老化性能必然也有一定的变化,我们用红外光谱方法研究了聚丙烯和苯乙烯-丁二烯星型嵌段共聚物的共混物(PP-SBS)的光氧化降解行为。  相似文献   

13.
The oxidative matrix polymerization of pyrrole (Py) by Fe(III), Cu(II), Ni(II), Co(II), and Zn(II) in the presence of polyacrylic acid (PAA) was studied and water‐soluble products along with insoluble products were obtained. The metal (Me) content of the insoluble part was determined by using atomic absorption spectroscopy (AAS). The effects of the oxidation potential of Me ions and ligands on the aggregation of polypyrrole (PPy) on the matrix polymer were measured by ultraviolet (UV)‐visible spectra. These findings also were checked by cyclic voltammetry (CV) measurements on PAA–Cu and PAA–PPy–Cu interactions. The conductometric titration results of PAA–PPy–Me ternary solutions were explained in the light of the interaction of Me ions with Py to polymerize on the PAA matrix resulting in some free carboxyl groups with a possibility of having Me–polymer complexes and a ternary complex (PAA–Me–PPy). The insoluble products were characterized by Fourier transform infrared (FTIR), elemental analysis, scanning electron microscopy (SEM), and four point probe conductivity measurements. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1115–1123, 1999  相似文献   

14.
Kinetics of chemical oxidative dispersion polymerization of 3,5‐xylidine (Xy) in aqueous medium with ammonium persulfate (APS) as an oxidant was studied by monitoring the amount of proton released from Xy monomer, which was obtained from the amount of potassium hydroxide (KOH) solution added to keep constant pH values using a pH stat. The initial polymerization rate (R) [mol/L/min] of Xy was expressed as follows: R = 1.65 (1 − α) [Xy] [APS], where α is the degree of ionization of Xy, and [Xy] and [APS] are concentrations of Xy and APS, respectively. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4238–4246, 2000  相似文献   

15.
A novel multifunctional superabsorbent composite from acrylic acid (AA), acrylamide (AM), sodium humate (SH) and organo‐attapulgite (organo‐APT), PAA‐AM/SH/organo‐APT, was synthesized by aqueous solution polymerization, using N,N′‐methylenebisacrylamide (MBA) as a crosslinker and ammonium persulfate (APS) as an initiator. The organification of APT with hexadecyltrimethyl ammonium bromide (HDTMABr) was proved by FT‐IR. The effects of organo‐APT (HDTMA‐APT) content in the superabsorbent composite and organification degree of it on water absorbency of the superabsorbent composite were studied. The effects of incorporated HDTMA‐APT on swelling rate, water absorbency in various saline solutions and reswelling capability of the superabsorbent composite were also investigated. The results indicate that organification of APT had a remarkable influence on swelling behaviors of the superabsorbent composites. Comparing with the composite doped with APT, water absorbency for the composite incorporated with 10 wt% HDTMA‐APT was enhanced from 996 to 1282 g g?1 in distilled water and from 63 to 68 g g?1 in 0.9 wt% NaCl solution, respectively. The superabsorbent composite acquired its highest water absorbency when the organification degree of APT was 8.02 wt%. Water absorbency of the composites in various saline solutions decreased with the increasing concentration, especially for the multivalent cations. In addition, swelling rate and reswelling capability of the superabsorbent composite were also improved by introducing HDTMA‐APT into the composite compared with that of incorporating APT. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
This article describes the buildup of hydrogen bonded multilayer film of poly(2-vinylpyridine) (P2VP) and poly(acrylic acid) (PAA), and the influence of polymer molecular weight on the formation of microporous film by post-base treatment. The formation of a microporous film involved a two-step mechanism: the release of PAA from P2VP/PAA multilayer, and the reorganization of the remaining P2VP on the substrate. Fourier transform infrared spectroscopy (FT-IR) indicated that the release of PAA from hydrogen bonded multilayer was a rapid process, which was almost independent of the molecular weight of PAA. Furthermore, the molecular weight of P2VP had a great effect on micropore formation by immersing the P2VP/PAA multilayer in basic solution. The rate of micropore formation increased with increasing molecular weight. We anticipate that a comparative study on P2VP/PAA films containing high or low molecular weight polymer provides a way to control the surface morphology, and will be helpful and constructive for the forthcoming discussion about the formation of the microporous film.  相似文献   

17.
Pullulan-g-poly(p-acetoxystyrene) ( I ) was prepared using ammonium persulfate (APS) as an initiator in dimethylsulfoxide (DMSO) solution. I was deacetylated by hydrazine hydrate to yield pullulan-g-poly(p-hydroxystyrene) ( II ). The degree of polymerization of the grafted poly(p-hydroxystyrene) chain ( III ) was 15–20. Despite the effective grafting (%), this method caused the degradation of pullulan. The number of branch polymer chains per pullulan molecule were evaluated to be 0.9 to 2.5 from number average molecular weights of the permethylated II and III . The glass transition temperature of II was higher than that of III , indicating that the polar hydroxyl groups of pullulan in the graft polymer caused an increase in the rigidity of the grafted polymer chains. Pullulan-g-poly(o-hydroxystyrene) and pullulan-g-poly(MMA) were also readily prepared by this method.  相似文献   

18.
Non‐porous P2 glass beads were etched with sodium hydroxide to increase the number of silanol groups that could be used to modify the surface. The etched glass beads were then functionalized with 3‐aminopropyltriethoxysilane (APS) and/or glycidoxypropyltrimethoxysilane (GPS). The surface of the glass beads were further modified with poly(acrylic acid) (PAA) by reacting the carboxyl groups on PAA with the amino groups of the pregrafted APS. The chemical modifications were characterized by FT‐IR spectroscopy, particle size analyzer and tensiometry for contact angle and porosity measurements. Five different molecular weight PAA polymers ranging from 2000 to 3,000,000 were grafted with less than expected increase of grafted PAA with molecular weight. The amount of APS and PAA on the surface was determined from thermogravimetric analysis and elemental analysis data. The surface properties of the surface modified glass beads were determined by measuring water and hexane penetration rate and contact angle. The surface morphology was examined by scanning electron microscopy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Novel interpenetrating polymer network (IPN) nanogels composed of poly(acrylic acid) and gelatin were synthesised by one pot inverse miniemulsion (IME) technique. This is based on the concept of nanoreactor and cross-checked from template polymerization technique. Acrylic acid (AA) monomer stabilized around the gelatin macromolecules in each droplet was polymerized using ammonium persulfate (APS) and tetramethyl ethylene diamine (TEMED) in 1:5 molar ratio and cross-linked with N,N-methylene bisacrylamide (BIS) to form semi-IPN (sIPN) nanogels, which were sequentially cross-linked using glutaraldehyde (Glu) to form IPNs. Span 20, an FDA approved surfactant was employed for the formation of homopolymer, sIPN and IPN nanogels. Formation of stable gelatin-AA droplets were observed at 2% surfactant concentration. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) studies of purified nanogels showed small, spherical IPN nanogels with an average diameter of 255 nm. In contrast, sIPN prepared using the same method gave nanogels of larger size. Fourier-transform infrared (FT-IR) spectroscopy, SEM, DLS, X-ray photoelectron spectroscopy (XPS) and zeta potential studies confirm the interpenetration of the two networks. Leaching of free PAA chains in sIPN upon dialysis against distilled water leads to porous nanogels. The non-uniform surface of IPN nanogels seen in transmission electron microscopy (TEM) images suggests the phase separation of two polymer networks. An increase of N/C ratio from 0.07 to 0.17 (from PAA gel to IPN) and O/C ratio from 0.22 to 0.37 (from gelatin gel to IPN) of the nanogels by XPS measurements showed that both polymer components at the nanogel surface are interpenetrated. These nanogels have tailoring properties in order to use them as high potential drug delivery vehicles for cancer targeting.  相似文献   

20.
An effective and simple method was developed to prepare highly conductive polyaniline by coagulation polymerization. Depending on the coagulation reaction between aniline salts and lauryl sulfonate (SDS), not only was the polymerization rate of aniline monomers greatly decreased but also the doping efficiency of hydrochloric acid was effectively increased. Low polymerization rate provided enough time for the conformation adjustment of polyaniline chains and the diffusion of doping agent. Meanwhile, the doping efficiency of hydrochloric acid on polyaniline chains was effectively increased due to its easy diffusion among many vacancies, which were generated when SDS separated in the process of polymerization. Therefore, the electrical conductivity of polyaniline prepared by coagulation polymerization was increased more than ten times than that of polyaniline, which was prepared by conventional methods. In addition, the important factors to influence the preparation, such as SDS concentration, hydrochloride acid (HCl) concentration, content of ammonium persulfate (APS), and polymerization time were also investigated. When the molar ratio (aniline:SDS:HCl :APS) was set to 1.69:0.46:15.38:1, the conductivity of polyaniline reached 24.39 S/cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号