首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
赵永蓬  李连波  崔怀愈  姜杉  刘涛  张文红  李伟 《物理学报》2016,65(9):95201-095201
报道了毛细管放电69.8 nm软X射线激光的光强分布特性. 实验中所用毛细管长度为35 cm, 放电主脉冲电流幅值为11.5 kA, 放电初始气压为14-16 Pa. 测得的光斑强度分布由两部分构成, 在中心有一个占光强绝大部分的主峰, 其发散角约为0.4 mrad, 边缘还有两个小的离轴峰, 峰-峰发散角约为1.5 mrad. 理论上采用几何光学近似的方法对其光强分布进行计算, 光斑如此小的发散角主峰的出现, 可能主要是由于毛细管放电过程中电子密度在轴心处具有轻微凹陷造成的.  相似文献   

2.
We describe an experiment demonstrating XUV amplification following collisional excitation in a capillary discharge plasma irradiated by a picosecond IR laser pulse. Guiding and temporally resolved transmission of the pump laser beam are also demonstrated and analysed. The short pump laser pulse heated rapidly the electrons producing amplification in the 3p1S0–3s1P1 transition of Ne-like sulphur at 60.84 nm. The estimated gain–length product was equal to 6.8, while the beam divergence reached 2.5 mrad for 30 mm capillary. This new, hybridly pumped collisional soft X-ray laser with the transient gain offers a new way towards efficient table-top XUV sources.  相似文献   

3.
We have tested soft X-ray lasing in neon-like germanium with cylindrical targets where wave guiding and plasma confinement may affect lasing. An intense soft X-ray laser beam of 0.05 MW peak power and a narrow beam divergence (8 mrad) was produced at 23.6 nm with a 4 cm long straight cylindrical target of 0.72 mm inner diameter. Bending the cylindrical target to form a toroidal shape increased the lasing intensity by a factor of 3 accompanied with reduction of the beam divergence from 8 to 6 mrad.  相似文献   

4.
By focusing 40-TW, 30-fs laser pulses to the peak intensity of 1019 W/cm2 onto a supersonic He gas jet, we generate quasi-monoenergetic electron beams for plasma density in the specific range 1.5×1019 cm-3≤ne≤3.5×1019 cm-3. We show that the energy, charge, divergence and pointing stability of the beam can be controlled by changing ne, and that higher electron energies and more stable beams are produced for lower densities. The observed variations are explained physically by the interplay among pump depletion and dephasing between accelerated electrons and plasma wave. Two-dimensional particle-in-cell simulations support the explanation by showing the evolution of the laser pulse in plasma and the specifics of electron injection and acceleration. An optimized quasi-monoenergetic beam of over 300 MeV and 10 mrad angular divergence is demonstrated at a plasma density of ne≃1.5×1019 cm-3. PACS 52.35.-g; 52.38.Hb; 52.38.Kd; 52.65.-y  相似文献   

5.
The characterization of the laser beam intensity distribution of a highly saturated 46.9-nm soft X-ray laser excited by capillary discharges is reported. The laser produces a total output energy of 300 J/pulse by amplification in plasma channels having lengths up to 0.45 m. A regime of laser amplification, which is almost free from the effect of the refraction defocusing, is experimentally determined. This regime produces a soft X-ray laser beam with an intense sub-milliradiant component. In the longer active medium the laser intensity distribution reaches the divergence of 0.6 mrad, which approaches the limit of diffraction. A comparison of the experimental results with the simulations performed with a ray-tracing code shows that the small divergence of the beam could be attributed to the effect of a weak index waveguiding of the laser beam through the long plasma channels. PACS 42.55.Vc; 42.60.Jf  相似文献   

6.
Spectral analysis of K-shell X-ray emission of magnesium plasma, produced by laser pulses of 45 fs duration, focussed up to an intensity of ~1018 W cm?2, is carried out. The plasma conditions prevalent during the emission of X-ray spectrum were identified by comparing the experimental spectra with the synthetic spectra generated using the spectroscopic code PrismSPECT. It is observed that He-like resonance line emission occurs from the plasma region having sub-critical density, whereas K-α emission arises from the bulk solid heated to a temperature of 10 eV by the impact of hot electrons. K-α line from Be-like ions was used to estimate the hot electron temperature. A power law fit to the electron temperature showed a scaling of I 0.47 with laser intensity.  相似文献   

7.
A capillary discharge-pumped Ne-like Ar 46.9-nm soft X-ray laser at a low Ar pressure (28–46 Pa) is proven. To our knowledge, this is the first time an XRD laser output in the condition of the low threshold of a main-current pulse spike (20–21 kA) is demonstrated. The Al2O3 ceramic capillary tube is 20 cm in length (Mo electrode is 4 cm in length) and 3 mm in diameter. The maximum laser energy of the precalibrated XRD is 3.5 μJ. The maximum gain coefficient g = 0.46 cm?1, the maximum gain-length product is 8.28, the beam divergence is 5.4 mrad, and the laser pulse width is 1.65 ns. In addition, the results show that the laser plasma column became difficult to Z-pinch with a increasing Ar pressure, its Z-pinching state of a higher Ar pressure fluctuates more intensely than that of a lower pressure by analyzing the scattering of the delay time between the pre-and main-current pulse.  相似文献   

8.
By means of spatially resolved high-resolution X-ray spectroscopy, we have investigated the generation of fast ions at various laser installations with different flux densities and laser wavelengths. It is demonstrated that the fast ion generation in laser-produced plasma can be achieved for a very low level of the averaged laser intensity on the target. The time-of-flight mass spectrometry ion diagnostics and X-ray spectrographs give very close results for the energy distribution of the thermal ion component. For higher energies, however, we found significant differences: the spatially resolved high-resolution spectrographs expose the presence of suprathermal ions, while the time-of-flight method does not. Suprathermal ion energies E ion plotted as a function of the qλ2 parameter show a large scatter far above the experimental errors. The cause of these large scatters is attributed to a strong nonuniformity of the laser intensity distribution in the focal spot. The analysis by means of hydrodynamics and spectral simulations show that the X-ray emission spectrum is a complex convolution from different parts of the plasma with strongly different electron density and temperature. It is shown that the highly resolved Li-like satellite spectrum near Heαcontains significant distortions even for very low hot electron fractions. Non-Maxwellian spectroscopy allows determination of both the hot electron fraction and the bulk electron temperature.  相似文献   

9.
High-resolution soft X-ray spectra of H-like and He-like ions were produced from laser irradiated silicon and aluminum targets. Plasma size was about 100 μm. X-ray spectra were analyzed to determine plasma parameters. We compared the line shape of resonance transitions and their intensity ratios to corresponding dielectronic satellites and the intensities of the inter combination lines of He-like ions, with the results of model calculations. Such comparison gave average values of the electron density N e=(1?1.9)×1021 cm?3 and the electron temperature T e=460–560 eV for Si plasmas and about 560 eV for Al plasmas produced by the first and the second laser harmonics. According to our estimations, more than 1012 photons were produced within the resonance line spectral width and in the solid angle 2π steredian during the total decay period.  相似文献   

10.
A capillary discharge pumped soft x‐ray laser operating at 46.9 nm on the 3p–3s transition of the Ne‐like Ar has been realized by pumping the active medium with a relatively slow current pulse (dI/dt ≈ 6 · 1011 A/s). In order to study the role of the ablation in the production of the laser effect, the intensity of the amplified 46.9 nm line has been investigated using the same pumping current pulses in the plastic (polyacetal) and ceramic (Al2O3). We showed that the ablation of the capillary walls is unfavorable both for the compression and stability of the plasma and consequently for the soft x‐ray laser production. The amplification and lasing effects are observed only in the ceramic channel. The measurements of the line intensity at 46.9 nm showed the lasing with a gain‐length product of ≈ 9, a laser pulse energy of ≈ 5 μJ, a pulse duration of 1.3 ns and a beam divergence of ≈ 3.5 mrad. In addition, effect of the scaling of the time of lasing with the initial plasma diameter was demonstrated experimentally and compared with a one‐dimensional MHD model.  相似文献   

11.
Experiments were performed with a 15 J/500 ps Nd:glass laser (λ = 1064 nm) focussed to an intensity >1014 W/cm2. X-ray emissions from carbon foam and 5% Pt-doped carbon foam of density 150–300 mg/cc were compared with that of the solid carbon targets. The thickness of the carbon foam was 15 µm on a graphite substrate. X-ray emission was measured using semiconductor X-ray diodes covered with various filters having transmissions in different X-ray spectral ranges. It covered X-ray spectrum of 0.8–8.5 keV range. The X-ray emission in the soft X-ray region was observed to increase to about 1.8 times and 2.3 times in carbon foam and Pt-doped foam, respectively with respect to solid carbon. In hard X-rays, there was no measurable difference amongst the carbon foam, Pt-doped carbon foam and solid carbon. Scanning electron microscope (SEM) analysis demonstrates that foam targets smoothens the crater formed by the laser irradiation.  相似文献   

12.
Leilei Pan 《Optics Communications》2010,283(10):2193-3220
The expressions for the spectral intensity of partially coherent Gaussian Schell-model (GSM) radial array beams for both the correlated and uncorrelated superpositions passing through ABCD optical systems have been derived by using the extended Huygens-Fresnel diffraction integral. The effects of the normalized radius R, the number of beamlets N, the spatial coherent parameter of array beamlets β and the optical system parameters on the on-axis and off-axis relative spectral shifts for the two types of superposition have been discussed in detail. The results show that for the correlated superposition, the on-axis spectral intensity in free space and the off-axis spectral intensity on the geometrical focal plane depends on the source spectral density S0(ω), the spatial coherent parameter of array beamlets β, the generalized Fresnel number of the system F, the normalized radius R and the number of beamlets N, whereas the spectral intensity for the uncorrelated superposition is independent of the number of beamlets N. Furthermore, as for on the actual focal plane, the off-axis spectral intensity for the two types of superposition is closely related to N.  相似文献   

13.
V. S. Popov 《JETP Letters》2001,74(3):133-138
The probability W of e + e ?-pair production in vacuum by an intense time-varying electric field created by optical or X-ray laser is calculated. Two characteristic regions γ?1 and γ?1 of adiabaticity parameter γ are considered. With an increase in γ and on passing from monochromatic radiation to a finite laser pulse, the probability W increases sharply (for the same field intensity). The dependence of the probability W and the electron and positron momentum spectrum on the pulse shape is discussed (the dynamic Schwinger effect).  相似文献   

14.
Intense lasing had been obtained from argon plasma in the soft X-ray region from a capillary discharge plasma system. Different diagnostics have been used to characterize the lasing properties by recording the temporal, spatial, and spectral profiles of the emission. The divergence measurement indicates that the soft X-ray laser beam has good directionality with a divergence of 3.5 mrad. The spectrum of the laser beam measured using a transmission grating showed intense lasing line at 46.9 nm. Diffraction orders as high as 10th orders were observed. The temporal profile recorded with a vacuum diode showed a distinct laser peak with a pulse width ~1.2 ns (FWHM). In addition, the coherence of the X-ray laser beam was also confirmed from the high-contrast interference fringes (visibility ~85 %) recorded using double slits.  相似文献   

15.
We consider the new mechanism of X-ray generation by clusters under irradiation by femtosecond laser pulses, the so-called collective photorecombination. We develop the theory of the photo-recombination of electrons that pass from atomic clusters at the outer ionization to the ground level of a homogeneously charged cluster. Such a cluster is considered to be a quantum potential well. The dipole approximation is inapplicable for this process. We conclude that X-ray photons in collective photorecombination on a charged cluster as a whole have an energy that is much larger than that for photorecombination on separate atomic ions inside the cluster. For a typical cluster of 2.25 × 106 electrons, with a radius R = 300 Å, and a number density of plasma electrons n e = 2 × 1022 cm?3, we find that at a 5% outer ionization of this cluster, the energy of hard X-ray photons is 7.2 keV.  相似文献   

16.
Zhao J  Dong QL  Zhang J 《Optics letters》2007,32(5):491-493
A plasma with a valley density profile at the required electron density for high-gain operation of an x-ray laser could be obtained using a normally incident 300 ps laser pulse followed by a grazing-incident 300 ps laser pulse. Sudden heating of the valley plasma region by another grazing-incident 300 fs laser pulse would then yield a highly efficient x-ray laser beam with a deflecting angle of 2 mrad and a divergence angle of 4 mrad. Saturation operation of the x-ray laser beam at 32.6 nm could be achieved with a total pump energy of less than 100 mJ.  相似文献   

17.
M. B. Smirnov 《Laser Physics》2010,20(5):1009-1018
X-ray radiation is studied for large clusters consisting of 107–1010 atoms and irradiated by an intense laser pulse with an intensity ranged from (1014 up to 1018 W/cm2). The model is developed for such a laser plasma that includes the radiative transitions and the processes of excitation and quenching of multicharged ions of this plasma by electron impact. Due to interaction of a radiating multicharged ion with a surrounding plasma, spectral lines of emission are broaden and neighboring spectral lines are overlapped. As a result, the spectrum of radiation of multicharged ions is transformed into a continuous spectral band. The model under consideration includes important plasma processes including dielectronic recombination, spontaneous radiation, excitation, quenching and ionization of multicharged ions by electron impact. On the basis of the model developed the X-ray spectrum and spectral power are evaluated. In the range of laser intensities under consideration a laser plasma formed contains multicharged ions with charges Z = 26?36 that corresponds to the 3d-electron shell in the xenon case.  相似文献   

18.
We present a new method to generate ultra-short X-ray laser pulses by using the recently demonstrated laser-driven betatron source to photo-pump inner-shell transitions. The proposed compact set-up will then open the route to a wide range of applications. The betatron spectrum and ion-population kinetics are modeled and the temporal evolution of the gain coefficient for the K-α transitions is assessed. Using measured values of divergence, duration, and number of photons per pulse of the betatron source as input parameters, local gain values close to 60 cm?1 are calculated for nitrogen at 3.2 nm. Significant gain values are also numerically obtained at shorter wavelengths (for neon at 1.5 nm) when the betatron energy distribution is optimized as suggested by recent laser wakefield electron acceleration experiments.  相似文献   

19.
We have succeeded in developing a laser-pumped X-ray laser with full spatial coherence at 13.9 nm. The X-ray laser beam with a very small divergence of 0.2 mrad was generated from double target experiments, where a seeding light from the first laser medium was amplified in the second laser medium. The observed divergence was close to the diffraction limit value within a factor of two. The seeding light was amplified in the second medium without refraction influence and the gain coefficient was 7.9 cm-1. From the measurement of visibility, it was found that the spatial coherent length was longer than the beam diameter. PACS 41.50+h; 42.55.Vc  相似文献   

20.
5—200?范围激光等离子体X射线辐射特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用带有针孔的透射式光栅光谱仪研究了激光等离子体X射线辐射的原子序数依赖性和激光功率密度对辐射的影响。得到了波长为1.06μm,平均功率密度为5×1014W/cm2的激光辐照条件下Z=6(C)到Z=79(Au)的不同原子序数激光等离子体X射线发射光谱。点聚焦和线聚焦激光照射方式下Al,Au等离子体X射线发射的对照实验结果表明,激光功率密度对低Z等离子体X射线发射的影响比对高Z的影响更明显。 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号