首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Abstract

The soluble organic fraction (SOF) of particulate matter from diesel exhaust (from point sources, ambient air, etc.) contains hundreds of organic constituents. Normal-phase high pressure liquid chromatography (HPLC) has been used to separate the SOF into sub-fractions suitable for subsequent chemical analysis and bioassays. These fractions consist of non-polar(PAH), moderately polar (transition) and highly polar constituents. The non-polar fractions have been well characterized and consist of PAH and aliphatic hydrocarbons. The specific compounds present in the transition and polar fractions are for the most part unknown. This analytical information has been difficult to obtain since these compounds are highly labile, polar, of low volatility and in very low concentrations when compared to the bulk of material found in the SOF. Mutagenicity tests using the Ames Salmonella typhimurium assay indicate that the transition fraction accounts for most of the mutagenicity when compared to the non-polar (PAH) and polar fractions.

A variety of chromatographic and mass spectrometric techniques are described that have been used to determine the composition of the HPLC fractions. More than one hundred species have been identified in the transition fraction of diesel particulate matter using high resolution gas chromatography (HRGC)/high resolution mass spectrometry (HRMS), HPLC and direct-probe high resolution mass spectrometry. It has been found that the transition fraction contains mostly PAH derivatives consisting of hydroxy, ketone, quinone, carboxaldehyde, acid anhydride and dihydroxy derivatives of PAH. Three nitro-PAH species have been tentatively identified and 1-nitropyrene positively identified in the transition fraction. The 1-nitropyrene was found to account for approximately 45% and 30% of the direct-acting mutagenicity observed for the transition fraction and total extract, respectively. The HPLC separation procedure was shown to give better than 95% recovery of the mass and mutagenic activity. The problem of PAH oxidation during the analytical procedures and possible effect on bioassay results are discussed.  相似文献   

2.
Abstract

A multi-dimensional chromatographic method was developed and applied to the separation of thia-arenes and polycyclic aromatic hydrocarbons (PAH) derived from coal tar. A thia-arene-rich fraction, prepared using a combination of alumina chromatography and palladium chloride/silica gel chromatography, was further separated using normal phase HPLC to isolate fractions containing thia-arenes with molecular masses ranging from 184 amu to 284 amu. These fractions were analysed using gas chromatography-mass spectrometry; approximately one-half of the thia-arenes in a coal tar extract were retained and separated by the palladium chloride-silica gel step. This methodology has been successfully applied to coal tar, air particulate material, sediments and biological samples.  相似文献   

3.
Summary Retention characteristics of series of polymethyl and mono-n-alkyl derivatives of benzene and pyrene, and also of parent polycyclic aromatic hydrocarbons (PAH), were studied using silica and aminopropyl- and cyanopropyl-modified silica. Differences in the selectivities for the studied compound groups were found between the three phases. Deviations from linear behaviour in plots of log (k′)vs. carbon number were observed for the methyl series. These are explained in terms of differences in π-electron delocalisation within the aromatic ring systems. Further, the effect of methyl substitution on selectivity decreased with an increasing number of aromatic rings. Results were obtained which indicated that the primary adsorption site in a cyano column used in normal phase mode, at least for PAH molecules, is the cyano group.  相似文献   

4.
This paper presents a trisolvent ultrasonic extraction and HPLC analysis method for the determination of 11 polycyclic aromatic hydrocarbons in air particulate collected on an air filter by a commercial high volume air sampler. A reverse phase column, Vydac 201 TP, and a gradient mobile phase, acetonitrile/water, were used. The 11 PAHs, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a, h]anthracene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene were completely resolved under experimental conditions. All the PAHs except coronene were monitored by fluorescence with λex=270 nm, λem>389 nm. Coronene was monitored by UV with λ=300 nm. The methodology was evaluated by spiking SRM 1649 with a PAH standard and then going through different extraction procedures and analyzing the PAH concentrations without clean-up. An external standard method was used for quantitation. The recovery yields for fluoranthene, benz[a]anthracene, benzo[a]pyrene, benzo[ghi]perylene and indeno[l,2,3-cd]pyrene were above 90%. The detection limits of PAH with fluorescence at λex=270 nm, λem>389 nm ranged from 5.7 pg to 69.5 pg.  相似文献   

5.
《Analytical letters》2012,45(8):1171-1192
Abstract

The response of polycyclic aromatic hydrocarbons (PAH) at different UV wavelengths was measured using high performance liquid chromatography with spectrophotometric diode-array detection. By utilizing the total UV absorption bandwidth (200-400 nm), it was found that a narrow distribution of normalized response factors (area/g) could be obtained for 16 PAH in a reference mixture of frequently-occurring species, even though the PAH represented a wide variety of different chromophores.

Using the mean response factor for the 16 PAH, a universal calibration factor was obtained that formed the basis of a method for the determination of PAH for which calibration data cannot otherwise be obtained. It utilized normal phase high performance liquid chromatography (HPLC) with a cyanopropyl column and a hexane-dichloromethane mobile phase. The HPLC conditions were optimized for the separation of PAH according to their aromatic ring number. The method was developed for the characterization of complex mixtures of fossil fuels-derived PAH that cannot be analyzed by traditional methods. It is applicable to PAH having from 1 to 10 or more fused aromatic rings.  相似文献   

6.
Abstract

The phenomenon of fluorescence quenching was used for selective HPLC detection of fluoranthenic polycyclic aromatic hydrocarbons (PAH). Termed a “Quenchofluorometric” detection system, it employs a filter fluorimeter or spectrofluorimeter and nitromethane in the mobile phase as the fluorescence quenching reagent. Chromatograms obtained with and without the quenching reagent are compared for PAH standards, a coal tar extract, and a shale oil sample. The quenchofluorometric detection system provides an inexpensive method to achieve selective detection for fluoranthenic PAH as a group.  相似文献   

7.
《Analytical letters》2012,45(12):1051-1062
Abstract

Ultrasonic extraction of airborne particulate material on Hi-Vol filters is described. Almost all of the polar compounds are removed during the extraction by adsorption on the surface of the shredded glass fibers and controlled pore glass powder (CPG). The non-polar polynuclear aromatic hydrocarbons (PAH) in the extract are separated at room temperature by high pressure liquid chromatography (HPLC) on reverse phase Vydac using acetonitrile:water (70:30 v/v) as the chromatographic solvent. There is baseline separation of benzo(a)pyrene (BaP), benzo(k)fluoranthene (BkFt) and of benzo(e)pyrene (BeP), benzo(b)fluoranthene and perylene, the latter three present in one band. Extracts of airborne particulates show the same peaks. BaP elutes in approximately 14 minutes. Precision and accuracy measurements indicate full recovery of PAH and good extraction reproducibility. The detection limit of BaP at F 290/389 is less than 10 pg. Total analysis time is approximately 1 1/2 hr, most of which is waiting time.  相似文献   

8.
Twenty eight native vegetable oils were analyzed for polycyclic aromatic hydrocarbons. Generally PAH concentrations were low, but olive oils showed significantly higher contamination by light PAH ranging from 53 to 105.6 μg/kg. Muscle and liver samples of bream from the river Elbe contained little or no detectable amounts of PAH, whereas fresh and canned oysters and mussels showed higher contaminations. Highest PAH concentrations have been determined in “smoked oysters in oil” with 75.8 μg/kg benzo[a] pyrene for the oil and 12.2 μg/kg for the oyster meat.  相似文献   

9.
In this work, using benzo(a)pyrene (BaP) as marker, the analytical merits of on-line flow-injection cloud-point extraction (FI CPE), including preconcentration factor, extraction efficiency, sample throughput, and analysis time were evaluated by use of peroxyoxalate chemiluminescence (CL) detection. Moreover, by detailed discussion of several preconcentration conditions for traditional and on-line FI CPE the advantages of on-line FI CPE became conspicuously apparent. When coupled with separation techniques such as high-performance liquid chromatography (HPLC) or capillary electrophoresis (CE), on-line FI CPE–CL has much potential for analysis of low concentrations of polycyclic aromatic hydrocarbons (PAH) in environmental samples.  相似文献   

10.
The development and certification of a coal fly ash certified reference material (CRM) for polycyclic aromatic hydrocarbons (PAH) is described; this is the first natural matrix CRM for organic environmental analysis in China. The homogeneity and stability of this material have been tested by HPLC. The concentrations of several PAH were determined by use of two independent, different methods – solvent extraction–HPLC analysis with UV detection coupled with fluorescence detection (FLD) and solvent extraction, isolation with a silica column, and GC analysis with flame ionization detection (FID). Five certified values were determined: phenanthrene 7.1 ± 2.6 μg g–1, anthracene 2.0 ± 0.8 μg g–1, fluoranthene 7.4 ± 1.9 μg g–1, pyrene 7 ± 2 μg g–1, and benzo[a]pyrene 1.3 ± 0.3 μg g–1. Reference values for several other PAH are also suggested.  相似文献   

11.
12.
The acid-induced cloud-point extraction (CPE) technique based on sodium dodecylsulfate (SDS) micelles has been used for preconcentration of ten representatives of polycyclic aromatic hydrocarbons (PAHs) for the following fluorescence determination. The effect of the acidity of solution, SDS and electrolyte concentrations, centrifugation time and rate on the two-phase separation process and extraction percentages of PAHs have systematically been examined. Extraction percentages have been obtained for all PAHs after CPE ranged from 67 to 93%. Pyrene was used as a fluorescent probe to monitor the micropolarity of the surfactant-rich phase compared with SDS micelles and this allows one to conclude that water content in micellar phase after CPE is reduced. The spectral, metrological and analytical characteristics of PAH fluorimetric determination after acid-based CPE with sodium dodecylsulfate are presented. Advantages provided by using CPE in combination with fluorimetric determination of PAHs are discussed. The determination of benz[a]pyrene in tap water is presented as an example.  相似文献   

13.
Based on a standard test method for purity by differential scanning calorimetry (DSC), ASTM E 928, a purity determination method for highly pure polycyclic aromatic hydrocarbons (PAHs) has been developed and validated. The robustness of the developed method was investigated by determining, under varying measurement conditions, the purity of two PAH certified reference materials (CRMs), benzo[c]phenanthrene and dibenzo[a,h]anthracene. The repeatability and intermediate precision of the developed method was determined by analysing the purity of benzo[c]phenanthrene and dibenzo[a,h]anthracene and PAH candidate CRMs indeno[1,2,3-c,d]pyrene, 6-methylchrysene and benzo[a]pyrene. The trueness of the method was studied using the same (candidate) CRMs and a series of 42 other PAH CRMs. For each of the five (candidate) CRMs, a full measurement uncertainty budget was developed. Also for PAH materials for which the DSC purity determination method has not been explicitly validated, the relative expanded measurement uncertainty was estimated.  相似文献   

14.
《Analytical letters》2012,45(2):143-153
Abstract

A TLC/HPLC procedure for the determination of polycyclic aromatic hydrocarbons (PAH), occuring in asphalt fumes (adsorbed on particular matter), is described. The method is based on extraction of asphalt fume particles, collected on glass fibre filters, using CCK4. Following a clean up step by the aid of a TLC procedure on Al2 O3 thinlayer plates, using a mixture of cyclohexane/acetone/ether as the mobile phase. Under UV-light, occuring PAH are indicated as fluorescent spots. A separation of the collected PAH into individual components and their identification is performed by the aid of a HPLC procedure. Futher-more, an approach was made to verify the separated PAH by their fluorescence spectra and their mass spectra.  相似文献   

15.
Abstract

We have studied the photooxidation of selected polycyclic aromatic hydrocarbons (PAH) in the presence of Ti(IV)oxide in a mixed solvent system consisting of N-methylpyrrolidinone (NMP) and water. Reaction rates for the photooxidation of acenaphthylene and pyrene were investigated by monitoring the disappearance of the PAH substrate from the reaction mixture as a function of time. For both compounds plots of In Co/Ct, as a function of time yielded straight lines, indicating first order kinetics with respect to the substrate. With an initial acenaphthylene concentration of 1.0 gL?1 the first order reaction rate constant was 0.19 hr?1 and the half life was 3.7 hr. With an initial pyrene concentration of 0.2 gL?1 the first order reaction rate constant was 0.0285 hr?1 and the half life was 24 hr. The photoproducts were characterized by high performance liquid chromatography with diode-array detection (HPLC/DAD) and by liquid chromatography/atmospheric pressure chemical ionization mass spectrometry (APCI/LC-MS). Although a number of simple oxidation products were identified the bulk of the photoproducts consisted of the parent PAH substituted with one or more solvent (NMP) molecules. The product mixtures from the photooxidation of the non-mutagens acenaphthylene and pyrene were found to be also non-mutagenic in our Salmonella typhimurium forward mutation assay.  相似文献   

16.
An empirical test is described for the evaluation of column selectivity in reversed-phase liquid chromatography. Using a test mixture of three polycyclic aromatic hydrocarbons (PAH), overall column selectivity toward PAH was assessed for over 20 different commercial C18 columns. Retention behavior was correlated to phase type (i.e., monomeric and polymeric surface modification chemistry) for custom synthesized phases. A classification scheme is proposed in which commercial C18 columns are grouped into three classes based on retention behavior: monomeric-like, polymeric-like, and intermediate phase selectivity toward PAH. Correlation of retention behavior of the test mixture with the separation of PAH mixtures and with more general column properties (e.g., phase thickness) is discussed.  相似文献   

17.
A fiber-optical sensor system for the on-line and in situ detection of aquatic polycyclic aromatic hydrocarbons (PAH) has been described. Detection limits in the ng l−1 range have been obtained using time-resolved laser-induced fluorescence spectroscopy. The method has been applied to the detection of pyrene in real samples from a contaminated area. Interferences from humic material has been eliminated by the use of chemometric methods such as three dimensional least squares and partial least squares. Received: 18 January 1995 / Revised: 3 March 1995 / Accepted: 10 March 1995 Correspondence to: R. Niessner  相似文献   

18.
Russian Journal of General Chemistry - The results of analysis of the content of benzo(a)pyrene and other high-molecular polycyclic aromatic hydrocarbons (PAH) in atmospheric air samples collected...  相似文献   

19.
A method is described which allows the determination of different substituted polycyclic aromatic hydrocarbons (PAH) such as NO2-PAH, carbazoles, keto-PAH, and aza-arenes in aerosol samples. Liquid CO2-extraction is used to minimize the loss of reactive compounds. High performance liquid chromatography on chemically activated silica is employed to prefractionate the samples into subfractions with a minimum of overlap between different PAH compound classes. Both electron capture detection and negative ion chemical ionization combined with capillary gas chromatography are used for identification and quantification. The latter method also allows distinction between isomers with different toxic properties when N2O/CH4 reaction gas mixtures are used. Selectivity for tetrachlorodibenzo-p-dioxins as against pesticides and polychlorinated biphenyls can be improved by this technique. The applicability of the method is critically discussed and different examples are given.  相似文献   

20.
Summary A method has been developed for the determination of trace levels of 32 pesticides, 19 explosives and 16 polycyclic aromatic hydrocarbons (PAH) in water in three individual steps. Solid-phase enrichment (SPE) is coupled to high-performance liquid chromatography (HPLC) with a fully automated system. The organic pollutants are enriched on reusable cartridges packed with adsorbent materials: pesticides and explosives on a mixed bed of divinylbenzene-ethylvinylbenzene copolymers (LiChrolut EN?) and perfluorinated polyethylene (PolyF?), and polycyclic aromatic hydrocarbons on C18-modified silica (Zorbax? ODS1). Thermally assisted desorption (TAD) has been shown to increase the recovery of analytes significantly. As all enriched analytes are transferred to the detector, only fifty millilitres of sample is needed for each single on-line analysis, compared with at least a litre for conventional methods. The separation of the enriched organic analytes is performed on specialized HPLC columns based on reversed-phase materials. The limits of detection of the system employed were found to be below 100 ng L−1. Use of fluorescence detection for the polycyclic aromatic hydrocarbons resulted in limits of detection in the upper pg L−1 range. Thek values, number of theoretical plates, the recovery rates and the limits of detection of this method for fast screening of organic pollutants from three fifty-millilitre aqueous samples are described. Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号