首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A modified QuEChERs method with liquid chromatography-tandem mass spectrometry for analysis of guadipyr residue and dissipation in rice matrices, paddy soil and paddy water was developed and validated. Mean recoveries and relative standard deviations in paddy soil, paddy water, rice plant, rice straw, rice hull and husked rice matrices at three spiking levels were 83.1–116.5% and 1.6–9.5%, respectively. The half-life of guadipyr was determined in 2 years at three different field sites in China via a dissipation experiment. The half-lives of guadipyr in paddy water were 0.22–0.37 days, 0.24–3.33 days in paddy soil and 0.44–1.90 days in rice plant. The terminal residues of guadipyr ranged from ND (concentrations of guadipyr were below limit of detection) to 50 μg kg?1 in paddy soil, 10–470 μg kg?1 in rice hull, ND70 μg kg?1 in husked rice and ND to 110 μg kg?1 in rice straw. The results would be helpful in fixing maximum residue limit of guadipyr, a new insecticide, in rice.  相似文献   

2.
A rapid, highly sensitive, and selective method was developed for the determination of the insecticide chlorantraniliprole (CAP) in corn and soil using ultra-performance liquid chromatography?Ctandem mass spectrometry (UPLC?CMS/MS). Samples were extracted with acetonitrile, and aliquots were cleaned with solid-phase extraction cartridges. Two precursor-product ion transitions for CAP were measured and evaluated to provide maximum confidence in the results. Average recovery for soil, corn grain, and corn straw at different levels (5 or 10, 40, and 100 ??g kg?1) ranged from 74.9 to 97.5%, with intra-day relative standard deviation (RSD) values of 1.9?C11.3% and inter-day RSD values of 4.7?C10.4%. Coefficients of determination (R 2) of 0.9988 or higher were achieved for CAP in soil, corn grain, and corn straw matrix calibration curves, from 5 to 1,000 ??g L?1. The CAP limits of quantitation in soil, corn grain, and straw were determined to be 5, 10, and 10 ??g kg?1, respectively, which were much lower than the maximum residue levels established by the Environmental Protection Agency of United States. UPLC?CMS/MS was used to determine the CAP residues in real corn and soil for studies on their dissipation. The trial results showed that the half-lives of CAP changed from 12.6 to 23.1 days in soils and ranged from 4.9 to 5.4 days in corn straws in the districts of Henan and Shandong, and the average levels of CAP residues in corn grains were all <0.01 mg kg?1 with a harvest withholding period of 180 days.  相似文献   

3.
A high-performance liquid chromatography with ultraviolet (HPLC-UV) detection method after derivatisation was developed for the first time for the novel fungicide zinc thiazole residue in tobacco samples. Field trials in two different locations were conducted to investigate the dissipation and residue of zinc thiazole in tobacco leaves and soil. The average recoveries of zinc thiazole were in the range of 82.5%–93.9% with relative standard deviations (RSDs) of 1.2%–9.1%. The zinc thiazole showed a rapid dissipation rate in fresh tobacco leaves with the half-lives of 1.1–1.6 days. The terminal residues of zinc thiazole in cured tobacco leaves and soil were 2.8–28.0 mg kg?1and <0.05 mg kg?1, respectively. The results could be used to establish the maximum residue limits (MRLs) and provide guidance for the scientific use of zinc thiazole in agriculture.  相似文献   

4.
Dissipation and residue levels of bifenthrin and chlorfenapyr in eggplant and soil under field conditions were investigated using gas chromatography coupled with an electron capture detector (GC-ECD). The mean recoveries of bifenthrin and chlorfenapyr were 85.2–104.9%, with relative standard deviations (RSDs) of 0.5–9.1%. The limit of quantification (LOQ) was 0.01 mg kg?1. Bifenthrin exhibited half-lives of 3.3 to 4.1 days in eggplant and 17.8 to 25.7 days in soil; the half-lives of chlorfenapyr were 3.5 to 3.8 days in eggplant and 21.7 to 27.7 days in soil. During harvest, the terminal residues of bifenthrin and chlorfenapyr were below 0.031 and 0.083 mg kg?1, respectively. Risk assessment for different groups of people in China was evaluated. The risk quotients (RQs) of bifenthrin and chlorfenapyr were ranged from 0.0068 to 0.0148 and from 0.0033 to 0.0072, respectively. These results may provide guidance on reasonable use of pesticides and serve as a basis for establishing maximum residue limits (MRLs) in China.  相似文献   

5.
A modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method for the analysis of triallate residue in wheat and soil was developed and validated. Multi-walled carbon nanotubes were used as clean-up sorbent. The residual levels and dissipation rates of triallate in wheat and soil were determined by liquid chromatography–tandem mass spectrometry. The limit of quantification was established as 0.01, 0.02 and 0.05 mg kg?1 for soil, wheat and wheat plant samples, respectively. The average recoveries of triallate ranged from 77% to 108% at fortified levels of 0.01–0.5 mg kg?1 with relative standard deviations of 3.0–8.4% (n = 5). From residue trials at three geographical experimental plots in China, the results showed that the half-lives of triallate in soils were 1.13–1.63 days. For trials applied according to the label recommendation, the final residues of triallate in wheat at harvest time were all below 0.05 mg kg?1 (the maximum residue levels of China, Japan, Korea and the US).  相似文献   

6.
The rate of decline of fenitrothion residues was investigated in leaves and soil of vineyard over 2 months after treatment with two different kinds of commercial formulations: emulsifiable concentrate (EC) and microencapsulate (ME). Fenitrothion residues were determined with GC-NPD after acetone extraction of soil and leaves. The measured initial deposits in soil and leaves varied between 2.6 and 3.8?mg?kg?1 and between 89 and 101?mg?kg?1, respectively. Fenitrothion residues in soil dropped at 0.1–0.2?mg?kg?1 after 60 days following application with EC formulation showing a more rapid decline than the ME. Fenitrothion residues in leaves from ME formulation treatment showed a longer persistence and lower decline rate than those from EC formulation. During the experimental period, fenitrothion remaining in leaves from ME application was 10 times more than from the EC one. Mathematically defined decline curves were established by determining optimal relationships between fenitrothion residues and time. The RF1st-order and RF1.5th-order equation achieved the best adjustment to the experimental data of fenitrothion dissipation on leaves for the ME and EC formulation, respectively, giving fenitrothion half-lives of about 2–3 days for ME and <1 day for EC formulation. In vineyard soil, the best adjustment to the experimental data for ME and EC formulation was achieved by the 1st-order and 1.5th-order equations, respectively, giving fenitrothion half-lives in soil of about 17–21 days for ME and 5 days for EC formulation.  相似文献   

7.
As one of the aminoglycoside antibiotics, kanamycin has been widely used in human therapy and as an additive to promote growth and prevent disease in forage. The kanamycin residue may have potenital risks for organisms and the environment. Therefore, the monitoring of this drug may have dynamic importance. In this work, a novel method for determination and dynamic study of kanamycin A was developed through solid phase extraction and derivatization with 4-chloro-3,5-dinitrobenzotrifluoride before high-performance liquid chromatography analysis. The calculated recoveries were from 72.3 to 92.5%, with relative standard deviations from 2.99 to 6.94%. The detection limit of kanamycin A in soil was 0.006?mg?kg?1 with a signal-to-noise ratio of 3. The dynamics in soil showed that the degradation of kanamycin A coincided with the equations C?=?1.951e?0.0482 t for black soil and C?=?1.807?e?0.0247 t for red soil and the half-lives were 14.38 and 28.06?d respectively. The degradation rate reached 95.19% in black soil after 63 days compared with 77.14% in red soil.  相似文献   

8.
In this study, an effective analytical method for simultaneous determination of thiamethoxam and its metabolite clothianidin in goji berry and soil was developed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The recoveries of the compounds in goji berry and soil at the levels of 0.005, 0.02, and 0.1 μg kg?1 were 84.7–98.9% and the relative standard deviations (RSDs) were 0.9–3.2%. The limits of detection (LOD) for both compounds in goji berry and soil matrices were 0.001 mg kg?1; the limits of quantification (LOQ) were 0.005 mg kg?1 for both compounds in two matrices. The dissipation and final residual experiments in 2016 with the commercial formulation of dinotefuran ? thiamethoxam 30% suspension concentrate (SC) was conducted in goji berries in northwest China (Qinghai, Gansu, Inner Mongolia, and Ningxia). Thiamethoxam was dissipated fast in goji plant ecosystem with half-lives were 1.08–1.01 and 2.04–4.25 days in goji berry and soil. The final residues of thiamethoxam were <0.005–0.382 and <0.005–1.120 mg kg?1 in goji berry and soil, respectively.  相似文献   

9.
QuEChERS and solid phase extraction (SPE) methods were applied for determining four herbicides (metazachlor, oxyfluorfen, quizalofop-p-ethyl, quinmerac) and one insecticide (α(±)-cypermethrin) in runoff water, soil, sunflower and oilseed rape plant matrices. Determination was performed using gas chromatography mass spectrometry (GC-MS), whereas high-pressure liquid chromatography mass spectrometry (HPLC-MS) was used for quinmerac. In all substrates linearity was evaluated using matrix-matched calibration samples at five concentration levels (50–1000 ng L?1 for water, 5–500 μg kg?1 for soil and 2.5–500 μg kg?1 for sunflower or oilseed rape plant). Correlation coefficient was higher than 0.992 for all pesticides in all substrates. Acceptable mean recovery values were obtained for all pesticides in water (65.4–108.8%), soil (70.0–110.0%) and plant (66.1–118.6%), with intra- and inter-day RSD% below 20%. LODs were in the range of 0.250–26.6 ng L?1 for water, 0.10–1.8 μg kg?1 for soil and 0.15–2.0 μg kg?1 for plants. The methods can be efficiently applied for field dissipation studies of the pesticides in energy crop cultivations.  相似文献   

10.
The dissipation dynamics and final residues of flutriafol on tobacco plant and soil were studied under field conditions. The residues of flutriafol in soil, green tobacco leaves and cured tobacco leaves were extracted by ultrasound-assisted extraction, cleaned up by dispersive solid-phase extraction and detected by liquid chromatography with tandem mass spectrometry. The limits of detection of flutriafol in soil, green tobacco leaves and cured tobacco leaves were 0.006, 0.033 and 0.033 mg·kg?1, respectively. The limits of quantification of flutriafol in soil, green tobacco leaves and cured tobacco leaves were 0.02, 0.1 and 0.1 mg·kg?1, respectively. Recoveries were 72.9–102% with relative standard deviations of less than 12% in soil and tobacco matrix. For field experiments, the half-lives of flutriafol in soil and green tobacco leaves were 9.2–11.5 and 9.5–11.1 days, respectively. At harvest, the final residue levels of flutriafol in cured tobacco leaves collected 21 days after one application at the recommended dosage were below 2.0 mg/kg. The maximum residue limit maximum residue limit (MRL) for flutriafol in tobacco has not yet been established in any countries. The data could help the Chinese Government to establish the MRL of flutriafol in tobacco and provide guidance on the proper use of flutriafol.  相似文献   

11.
《Analytical letters》2012,45(3):381-392
A method was developed for the determination of enestroburin residues in wheat grain, wheat straw, and soil by solid-phase extraction (SPE) and HPLC-UV. The analytes were extracted with acetonitrile, cleaned up by PestiCarb/NH2 cartridges and determined by HPLC with UV detector. This method is characterized by recovery >88.0%, precision (RSD) <7.8% and sensitivity of 0.005 mg/kg, in agreement with directives for method validation in residue analysis. The proposed method was successfully employed for the determination of enestroburin residue levels and its dissipation rates in a field trial in Beijing, China. Dissipation study shows that the half life of enestroburin in wheat straw was 5.35–5.81 days and in soil was 6.13–6.75 days. When enestroburin was applied according to the recommended dose and doubled dose, the final residue in wheat grain was both lower than 0.2 mg/kg. A harvest interval should be more than 7 d, and a dosage of 100–200 g (a.i.)/ha was suggested and considered as safe to human beings and animals.  相似文献   

12.
An analytical method was developed using a solid phase extraction (SPE) cleanup and gas chromatography for detecting the residues of difenoconazole in Chinese cabbage and soil. The recovery and the relative standard deviation of this method in Chinese cabbage was 87.6-99.0%, 1.71-10.50%, respectively; in soil was 92.4-95.5%, 4.93-10.70%, respectively. Further degradation of difenoconazole residue in Chinese cabbage and soil was studied to evaluate residue behavior and environmental safety of difenoconazole. Degradation rate of difenoconazole in both Chinese cabbage and soil followed the first order kinetics with the half-lives of 6.6-7.8 and 54.2-55.0 days, respectively.  相似文献   

13.
A simple and rapid analytical method for the detection of trifloxystrobin, trifloxystrobin acid and tebuconazole in soil, brown rice, paddy plants and rice hulls was established and validated by liquid chromatography with tandem mass spectrometry. Acceptable linearity (R2 > 0.99), accuracy (average recoveries of 74.3–108.5%) and precision (intra- and inter-day relative standard deviations of 0.9–8.8%) were obtained using the developed determination approach. In the field trial, the half-lives of trifloxystrobin and tebuconazole in paddy plants were 5.7–8.3 days in three locations throughout China, and the terminal residue concentrations of trifloxystrobin and tebuconazole were <100 and 500 μg/kg (maximum residue limits set by China), respectively, at harvest, which indicated that, based on the recommended application procedure, trifloxystrobin and tebuconazole are safe for use on rice. The risk assessment results demonstrated that, owing to risk quotient values of both fungicides being <100%, the potential risk of trifloxystrobin and tebuconazole on rice was acceptable for Chinese consumers. These data could provide supporting information for the proper use and safety evaluation of trifloxystrobin and tebuconazole in rice.  相似文献   

14.
A field experiment was conducted to evaluate clofentezine residue levels and dissipation trend in tangerine and soil for the safe application of clofentezine. A modified QuEChERS-HPLC-UVD method was developed to analyse clofentezine in tangerine and soil. Tangerine samples were homogenised and extracted by acetonitrile and then cleaned up with dispersive solid phase extraction (dSPE) by primary and secondary amine (PSA) and C18. Clofentezine residue was determined by high-performance liquid chromatography (HPLC) with a UV detector (UVD) at the wavelength of 268 nm. The presented method achieved the good linear relationship within the range from 0.05 to 5.0 mg kg?1 for clofentezine (R2 > 0.998). At the fortification levels of 0.05, 0.50 and 1.00 mg kg?1 in tangerine pulp, tangerine peel and soil, recoveries ranged from 75.9% to 117.7% with relative standard deviations (RSD) less than 8.2%. In the supervised field trials, the half-lives of clofentezine in tangerine and soil were approximately 11.3 and 8.6 days, respectively. At pre-harvest interval of 21 days, the residue of clofentezine in tangerine was below the maximum residue limits (MRL) (0.5 mg kg?1). Clofentezine (Water Dispersible Granule, 80%) was recommended to be sprayed twice and the recommended dosage ranged from 250 to 375 mg kg?1.  相似文献   

15.
A gas chromatography–tandem mass spectrometry method was developed and validated to simultaneously determine boscalid and fludioxonil in grape and soil samples. These samples were extracted with 10 mL of acetonitrile and purified using a mixed primary secondary amine/octadecylsilane sorbent. The method showed good linearity (R2 > 0.99) in the calibration range 0.005–2 μg/mL for both pesticides. The limits of detection and quantification for the two analytes in grape and soil were 0.006 and 0.02 mg/kg, respectively. Fungicide recoveries in grape and soil were 81.18–92.11% for boscalid and 82.73–97.67% for fludioxonil with relative standard deviations of 1.31–10.31%. The established method was successfully applied to the residual analysis of boscalid and fludioxonil in real grape and soil samples. The terminal residue concentrations of boscalid and fludioxonil in grape samples collected from Anhui and Guizhou were <5 mg/kg (the maximum residue limit set by China) 7 days after the last application and 1 mg/kg (the maximum residue limit set by USA) 14 days after the last application. These results could provide guidance for the proper and safe use of boscalid and fludioxonil in grape and help the Chinese government to establish an MRL for fludioxonil in grape.  相似文献   

16.
In this study, a rapid and sensitive method was developed for determining fenamidone and propamocarb hydrochloride residues in vegetables and soil by ultra-performance liquid chromatography-tandem mass spectrometry. The dissipation dynamics of fenamidone and propamocarb hydrochloride in pepper and soil was investigated in Beijing, Henan and Shandong provinces. The target compounds were extracted with methanol and cleaned with dispersive solid phase extraction using primary secondary amine. Two pairs of precursor product ion transitions for fenamidone and propamocarb hydrochloride were measured and evaluated. Average recoveries of fenamidone in potato, tomato, cabbage, pepper and soil at three levels (10, 100 and 1000 μg kg?1) ranged from 76.91% to 107.31% with relative standard deviations (RSDs) from 2.74% to 10.87% (n = 15). The average recoveries of propamocarb hydrochloride ranged from 74.84% to 97.96% with RSDs from 2.43% to 16.16% (n = 15). The limits of detection (LODs) for fenamidone in each matrix were 0.131–0.291 μg kg?1, and the limits of quantification (LOQs) were 0.436–0.970 μg kg?1. The LODs for propamocarb hydrochloride were 0.125–0.633 μg kg?1, and the LOQs were 0.417–2.11 μg kg?1. The results also showed that the dissipation of fenamidone and propamocarb hydrochloride in pepper and soil followed first-order kinetics model more than that of bi-exponential models. The half-lives of propamocarb hydrochloride were 6.90–15.78 days in pepper and 13.56–23.02 days in soil. The half-lives of fenamidone were 7.48–11.29 days in pepper and 35.18–42.78 days in soil.  相似文献   

17.
Dissipation dynamics of fenoxaprop-p-ethyl (FPPE) and fenoxaprop acid (FPA) (metabolite) in rice field conditions was investigated for two consecutive seasons. FPPE dissipated rapidly in soil with average half life of 1.42–2.19 days. Dissipation followed first-order kinetics. The method was validated in terms of accuracy, linearity, specificity and precision. Linearity was in the range of 0.005–5 µg mL?1 with limit of detection as 0.002 and 0.001 µg mL?1 for fenoxaprop-p-ethyl and fenoxaprop acid, respectively. Quantitation limit in soil, grain, straw and husk were 0.005, 0.008, 0.01 and 0.01 µg g?1 for fenoxaprop-p-ethyl, and 0.005, 0.01, 0.01 and 0.01 µg g?1 for fenoxaprop acid, respectively. Recovery in soil, rice grains, straw and husk ranged from 81.60–93.40, 77.85–87.00, 75.20–84.40 and 76.00–87.20% for FPPE and 82.50–88.20, 76.25–83.00, 74.80–83.60 and 75.00–85.40% for FPA, respectively. Below detectable limit of residues of FPPE and metabolite were observed in soil, rice grain, husk and straw samples at harvest. FPPE and FPA were of short persistence under field conditions and residues were below European Union-Maximum Residue Limits in all matrices that would cause adverse effect on environment and human/animal health.  相似文献   

18.
Two independent field trials were performed in Guizhou and Hunan, China in 2013 to investigate the dissipation and residue levels of saisentong in tobacco and soil. A novel and accurate method using high-performance liquid chromatography with diode array detection was developed and validated to determine saisentong levels in tobacco and soil. The average recovery of saisentong at fortification levels of 0.5, 2.5, 5.0 and 50.0 mg kg?1 in fresh tobacco ranged from 75.92 to 107.40% with a relative standard deviation (RSD) of 0.94 to 7.55%, that at fortification levels of 0.5, 2.0 and 5.0 mg kg?1 in tobacco powder ranged from 74.96 to 94.43% with a relative standard deviation (RSD) of 4.38 to 8.14%, and that at fortification levels of 0.1, 0.5 and 5.0 mg kg?1 in soil ranged from 86.90 to 100.0% with an RSD of 1.38 to 4.62%. The limit of detection (LOD) of saisentong was 0.15 mg?kg?1 in tobacco and 0.03 mg kg?1 in soil, and the limit of quantification (LOQ) was 0.5 mg kg?1 in tobacco and 0.1 mg kg?1 in soil, respectively. For field experiments, the half-lives of saisentong in tobacco from Guizhou and Hunan were 5.9 and 1.6 days, respectively; those in soil were 14.7 and 12.0 days, respectively. The results suggest that the saisentong dissipation curves followed the first-order kinetic. The terminal residues of saisengtong in tobacco ranged from 0.5 to 9.39 mg kg?1 at pre-harvest intervals (PHI) of 7, 14 and 21 days.  相似文献   

19.
A rapid and accurate method for the extraction and determination of the two organophosphorus insecticides, chlorpyrifos and acephate in top- and subsoil materials of three tropical clayey soils from Sarawak has been developed. Soil samples were extracted with ethyl acetate and the pesticides were determined by GC-FPD. High recoveries of 76–102% and 76–100% were obtained for acephate and chlorpyrifos respectively, at fortification levels of 0.01, 0.1 and 1 mg kg?1 with standard deviations below 9.0%. The addition of water prior to the extraction was important for obtaining high and reproducible recoveries. The method did not require clean-up of the extracts prior to GC analysis and could be detected down to 0.01 mg kg?1. A field study was conducted using the modified method to measure the degradation kinetics and migration of acephate and chlorpyrifos in one of the soils over a period of 84 days. The degradation of acephate and chlorpyrifos were rapid with half-lives of 3.3 and 8.7 days, respectively. Both pesticides were detected in subsoils 2 h after application at the deepest (50 cm) soil layers examined and at concentrations up to 5.42 mg kg?1. Subsoil concentrations of acephate were higher than for chlorpyrifos, and subsoil concentrations of acephate peaked after it had started to degrade in the top soil. The subsoil concentrations of the pesticides were attributed to transport with soil particles (chlorpyrifos) and via solution (acephate) through pores and cracks present in the soil profiles. The study demonstrates the high mobility of even strongly retained and fast degrading pesticides under tropical humid conditions.  相似文献   

20.
A rapid, sensitive, and selective method using a quick, easy, cheap, effective, rugged, and safe procedure in combination with high-performance liquid chromatography and tandem mass spectrometry was developed for the analysis of fenaminstrobin in peanut and soil. The average recoveries in all samples fall within 88.1%–10%, having relative standard deviations of 2.5%–14%. The limits of quantitation of fenaminstrobin in peanut shell, peanut kernels, peanut plant, and soil were 0.005, 0.004, 0.01, and 0.002 mg kg?1, respectively. The field trial results show that the half-lives of fenaminstrobin in peanut plant and soil are 1.3–10 and 5.5–20 days, respectively. Residues in peanut kernels were found to be present at <0.004 mg kg?1 levels, based on good agricultural practices recommended by the manufacturer. The risk posed by fenaminstrobin exposure at the recommended dosage is negligible to humans, depending on the risk quotient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号