首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Identification and detection of gunshot residue (GSR) is useful in firearm related events and provides important evidence in trials and related cases. At present, methodologies based on the analysis of inorganic particles found in GSR are not amenable to rapid presumptive testing in the field or laboratory settings. An alternative is to target the organic analytes that are vaporized during the firing event and then re-condense on skin and other surfaces, such as clothing. Previous studies have demonstrated that the persistence of organic compounds, such as diphenylamine (DPA), from hand swabs of shooters as detected using commercial ion mobility spectrometry (IMS) instruments was 3–4 h. These same studies indicated that secondary transfer did not occur, which implied that losses of the organic compounds were attributable to absorption into the skin. The goal of this study was to assess the dermal absorption characteristics of organic gunshot residue (OGSR) using IMS. Two studies were conducted. First, a qualitative IMS method was developed for the in vitro analysis of select OGSR compounds. In vitro studies with medical grade silicone were conducted using Franz diffusion cells (FDCs). The results from this study demonstrated that OGSR was dermally absorbed. Second, a semi-quantitative IMS method was developed for an in vitro study of DPA. The skin permeability of DPA (Kp) was experimentally determined to be 2.6?×?10?2 cm/hr, the steady state flux (Jss) was 13 μg cm?2 hr?1, and the lag time was 8.9 h. The results show excellent correlation with the 3–4 h persistence previously reported.  相似文献   

2.
This paper reports on the development of a simple method for the determination of two perfluorinated hydrocarbons (C7F14 and C8F16) in air down to 0.2 ng/m3, for long range atmospheric tracer experiments. The organic vapors are adsorbed on graphitized carbon black, desorbed thermally and determined by capillary GC-ECD at subambient temperature. Optimization of the experimental conditions is described. The tracers were tested in a field experiment where SF6 was also released and the agreement was satisfactory.  相似文献   

3.
Negative corona discharge atmospheric pressure chemical ionization (APCI) was used to investigate phenols with varying numbers of tert‐butyl groups using ion mobility spectrometry–mass spectrometry (IMS‐MS). The main characteristic ion observed for all the phenolic compounds was the deprotonated molecule [M–H]. 2‐tert‐Butylphenol showed one main mobility peak in the mass‐selected mobility spectrum of the [M–H] ion measured under nitrogen atmosphere. When air was used as a nebulizer gas an oxygen addition ion was seen in the mass spectrum and, interestingly, this new species [M–H+O] had a shorter drift time than the lighter [M–H] ion. Other phenolic compounds primarily produced two IMS peaks in the mass‐selected mobility spectra measured using the [M–H] ion. It was also observed that two isomeric compounds, 2,4‐di‐tert‐butylphenol and 2,6‐di‐tert‐butylphenol, could be separated with IMS. In addition, mobilities of various characteristic ions of 2,4,6‐trinitrotoluene were measured, since this compound was previously used as a mobility standard. The possibility of using phenolic compounds as mobility standards is also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

A plume of hydrocarbon contamination in soil from a leaking natural gas pipeline located at a depth of 80 cm was defined on the basis of discoloration of soil at 3 to 7 cm depth. Eleven sites were selected randomly on a grid superimposed on a map of the 240 m2 plume and 48 soil samples at depths from 7 cm to 150 cm were collected. Samples were individually extracted using cyclohexane in a Soxhlet extraction apparatus. Condensed extracts were analyzed using capillary GC and GC/MS techniques to determine quantitatively the dinstribution of C10 to C35 hydrocarbons in soil. In solvent extracts of the soils, over 150 organic compounds were resolved and detected at total concentrations from 0.1 to 2700 ppm. The vertical distribution of hydrocarbons was consistent throughout the plume with higher concentrations of all components with increased proximity to the surface. The hydrocarbons moved vertically from the leak and diffused horizontally along an interface created at 15 to 30 cm by the addition 20 years earlier of a dense clay soil to a naturally high-gypsum base. Ratios of soil concentrations in three size ranges for the hydrocarbons were used to evaluate the physical mechanism for gaseous migration and environmental fate of the hydrocarbons. These ratios were not uniform at every site and depth throughout the plume. Results were consistent with differences in mobility and fate of the hydrocarbons in the soil based on volatility and adsorption. Polycyclic aromatic hydrocarbons present in the natural gas and in the pipeline residue were also found in some but not all soil samples under the conditions of extraction and analyses which were not optimized in the soil-extraction of the aromatic compounds.  相似文献   

5.
The major uncertainty related to ion mobility spectrometry is the lack of knowledge about the characteristics of the ions detected. When using a radioactive atmospheric pressure ionisation source (e.g. 63Ni), from theory proton bound water clusters are expected as reactant ions. When analyte ions occur, proton transfer should lead to proton-bound monomer and dimer ions. To increase the knowledge about those ionisation processes in an ion mobility spectrometer (IMS), a ß-radiation ionisation source was coupled to a mass spectrometer (MS) and an identical one to an IMS. Exemplarily, acetone, limonene and 2- and 5-nonanone were introduced into both instruments in varying concentrations. By correlating the MS and IMS spectra, conclusions about the identities of the ions detected by IMS could be drawn. Proton-bound monomer, dimer and even trimer ions (MH+, 2MH+, 3MH+) could be observed in the MS spectra for acetone and 5-nonanone and could be assigned to the related signals detected by IMS. The oligomers could be expected from theory for increasing concentration. Limonene and 2-nonanone yielded in a variety of different ions and fragments indicating complex gas phase ion chemistry. Those findings on the obviously different behaviour of different analytes require further research focussed on the ion chemistry in IMS including the comparison of different ionisation sources.  相似文献   

6.
Ethyl parathion and toluene 2,4-diisocyanate (2,4-TDI) vapors were generated using a vapor generation system that was designed for the evaporation of liquid samples at known flow rates. The vapor generation of parathion and 2,4-TDI posed a challenge because of their low volatility and tendency to absorb into surfaces of the vapor generation system. Experimental concentration of parathion was determined using gas chromatography-mass spectrometry (GC-MS). 2,4-TDI was derivatized with 1-(2-pyridyl)piperazine to urea derivative which concentration was analyzed using high performance liquid chromatography (HPLC). In addition, in combination with vapor generator, aspiration IMS was used for monitoring ion mobility cell (IMCell) and semiconductor cell (SCCell) responses to parathion and 2,4-TDI vapors. The chromatographic results correlated well with the IMCell response data, showing high specificity of IMS to parathion and 2,4-TDI. The concentrations of parathion and 2,4-TDI at the detection limit of IMS were significantly lower than IDLH threshold values of parathion or 2,4-TDI, demonstrating high sensitivity of IMS to both compounds. The IMS patterns of both chemicals and the influence of humidity on IMCell and SCCell sensitivity were analyzed.  相似文献   

7.
《Analytical letters》2012,45(7):1437-1444
Abstract

We report the use of solid phase microextraction (SPME) combined with ion mobility spectrometry (IMS) for sampling, screening and identification of organic compounds that are readily detected by IMS. This is a new SPME application. SPME has emerged recently as an excellent sample preparation technique for gas chromatography (GC) and high performance liquid chromatography (HPLC). We have found that SPME can be used very conveniently with IMS. An example of SPME-IMS is described using SPME headspace sampling at room temperature with 0.1 mL vials containing 1.0 microgram or less of either cocaine freebase or cocaine hydrochloride. This is followed by analysis using IMS. A hole, drilled in the IMS sample ticket holder, serves as the SPME-IMS interface.

  相似文献   

8.
Methyl tert-butyl ether (MTBE) is commonly used as chemical additive to increase oxygen content and octane rating of reformulated gasoline. Despite its impact on enhancing cleaner combustion of gasoline, MTBE poses a threat to surface and ground water when gasoline is released into the environment. Methods for onsite analysis of MTBE in water samples are also needed. A less common technique for MTBE detection from water is ion mobility spectrometry (IMS). We describe a method for fast sampling and screening of MTBE from water by solid phase microextraction (SPME) and IMS. MTBE is adsorbed from the head space of a sample to the coating of SPME fiber. The interface containing a heated sample chamber, which couples SPME and IMS, was constructed and the SPME fiber was introduced into the sample chamber for thermal desorption and IMS detection of MTBE vapors. The demonstrated SPME-IMS method proved to be a straightforward method for the detection of trace quantities of MTBE from waters including surface and ground water. We determined the relative standard deviation of 8.3% and detection limit of 5 mg L−1 for MTBE. Because of short sampling, desorption, and detection times, the described configuration of combined SPME and IMS is a feasible method for the detection of hazardous substances from environmental matrices.  相似文献   

9.
An ion mobility spectrometer (IMS) probe system for real-time, subsurface soil-gas sampling applications is presented. The system includes an IMS and supporting electronics encased in a 51 mm diameter stainless steel probe housing. The IMS was challenged in the laboratory with 2,6-di-tert-butylpyridine (DtBP) and tetrachloroethylene (PCE) in zero air yielding reduced ion mobility constants (Ko) values of 1.42 cm2/Vs (n = 3) and 1.79 ± 0.01 cm2/Vs (n = 3), respectively. A resolving power of 38 and 31 was obtained for DtBP and PCE, respectively. The system was deployed at a PCE-contaminated site to demonstrate its performance under field conditions. PCE was detected in the vapor samples as evidenced by peaks with a Ko value of 1.80 ± 0.01 cm2/Vs for two measurements that were taken 6 min apart. The presence of PCE at the contaminated site was confirmed by GC-MS analysis of a gas sample at an EPA-certified laboratory, suggesting that this IMS system can be used to detect PCE under field conditions.  相似文献   

10.
This paper presents the characterization of a source for soft ionization of organic molecules. This source is based on a plasma jet established at the end of a capillary dielectric barrier discharge at atmospheric pressure. He, Ne and Ar as pure gas or with different concentrations of N2 are used as buffer gas for the plasma jet. Spectroscopic emission measurements are carried out along the plasma jet in and outside the capillary. The intensity variation of N2+ lines, for example emission at 391.4 and 427.8 nm, can be associated with the protonation process which is the basis for the soft ionization. The mechanism of the N2+ production outside the capillary, which is relevant for the protonation of molecules and sustains the production of primary ions, is investigated. The response signal of the ions in a nitrogen atmosphere was measured with an ion mobility spectrometer (IMS).  相似文献   

11.
Ion mobility spectrometry (IMS) is an analytical technique that separates gas‐phase ions drifting under an electric field according to their size to charge ratio. We used electrospray ionization‐drift tube IMS coupled to quadrupole mass spectrometry to measure the mobilities of glucosamine (GH+) and caffeine (CH+) ions in pure nitrogen or when the shift reagent (SR) 2‐butanol was introduced in the drift gas at 6.9 mmol m−3. Binding energies of 2‐butanol‐ion adducts were calculated using Gaussian 09 at the CAMB3LYP/6‐311++G(d,p) level of theory. The mobility shifts with the introduction of 2‐butanol in the drift gas were −2.4% (GH+) and −1.7% (CH+) and were due to clustering of GH+ and CH+ with 2‐butanol. The formation of GBH+ was favored over that of CBH+ because GBH+ formed more stable hydrogen bonds (83.3 kJ/mol) than CBH+ (81.7 kJ/mol) for the reason that the positive charge on CH+ is less sterically available than on GH+ and the charge is stabilized by resonance in CH+. These results are a confirmation of the arguments used to explain the drift behavior of these ions when ethyl lactate SR was used (Bull Kor Chem Soc 2014, 1023–1028). This study is a step forward to predict IMS separations of overlapping peaks in IMS spectra, simplifying a procedure that is trial and error by now.  相似文献   

12.
The leakage of sulphur hexafluoride (SF6) gas threats the global climate changes and personnel safety. Monitoring the concentration of SF6 in its application places is an industry regulation. In this study, ion mobility spectrometry (IMS) was developed for fast monitoring traces of SF6 in near-source ambient air. Due to the water is an important part of the natural air and affects most atmospheric measurements, the operating parameters of IMS monitoring SF6 were optimised for quantitative analysis of SF6 at different relative humidity (RH). It is discovered two main product ions SF6? and SOF4? by IMS at different RH. The calibration curves of SF6 were investigated by its relationship with the peak intensity of SOF4 for real application. The time resolution of the measurement was obtained less than 1 s and the limit of detection (LOD) achieved 0.16–0.68 ppm with a data averaging of 30 times. At last, the simulated application of monitoring SF6 leakage was tested in the fume hood of our lab. The results showed a great potential application prospect of IMS in monitoring SF6 in the ambient air of its application places.  相似文献   

13.
The optical characterization and chemical vapor sensing properties of 1,7-dibromo-N,N′-(bicyclohexyl)-3,4:9,10-perylene diimide thin film against to organic vapors were discussed in this study by using spin coating, UV–Vis spectroscopy, atomic force microscopy, surface plasmon resonance (SPR) and Quartz Crystal Microbalance (QCM) techniques. The perylene diimide thin films were fabricated with a refractive index values from 1.55 to 1.60 and thicknesses in the range between 15.80 and 26.32 nm using different spin speeds from 1000 to 5000 rpm. In this study, perylene diimide thin film sensor was exposed to dichloromethane, chloroform, carbon tetrachloride, tetrahydrofuran and ethyl acetate vapors by using both SPR and QCM techniques. Also, the swelling behaviors of the perylene diimide thin films prepared at different spin speeds were investigated with respect to dichloromethane vapor at the room temperature by using SPR data. Diffusion coefficients were found to be 11.34?×?10?17 (1000 rpm), 2.56?×?10?17 (3000 rpm) and 0.38?×?10?17 cm2 s?1 (5000 rpm) for dichloromethane vapor by using the Fick’s law of diffusion. It might be proposed that perylene diimide thin film optical chemical sensor element has a good sensitivity and selectivity for the dichloromethane vapor at room temperature.  相似文献   

14.
Chia-Sheng Cheng 《Talanta》2007,73(2):358-365
The response of localized surface plasmon resonance (LSPR) spectra of gold and silver nanoparticles, and gold nanoshells to organic vapors was investigated. The surface area of nanomaterials was sufficiently high for quantitative adsorption of volatile organic compounds (VOCs). Surface adsorption and condensation of VOCs caused the environmental refractive index to increase from n = 1.00 in pure air to as high as n = 1.29 in near saturated toluene vapor. The extinction and wavelength shift of the LSPR spectra were very sensitive to changes in the surface refractive index of the nanoparticles. Responses of the LSPR band were measured with a real-time UV-vis spectrometer equipped with a CCD array detector. The response of silver nanoparticles to organic vapors was most sensitive in changes in extinction, while gold nanoshells exhibited red-shifts in wavelength (∼250 nm/RIU) when exposed to organic vapors. The LSPR spectral shifts primarily were determined by the volatility and refractive indices of the organic species. The T90 response time of the VOC-LSPR spectrum was less than 3 s and the response was completely reversible and reproducible.  相似文献   

15.
The impurities in high-purity carbon tetrachloride (CCl 4 ) were determined by gas chromatography-mass spectrometry (GC-MS). The use of chromatography of near-saturated vapors allowed the injection of samples up to 1 μL into a capillary column and to achieve specific column efficiency in an isothermal mode of 221,000 t.p./m. The detection limits for impurities were 1 × 10−1 to 1 × 10−8 wt %.  相似文献   

16.
A recently developed atmospheric pressure ionization source, a distributed plasma ionization source (DPIS), was characterized and compared to commonly used atmospheric pressure ionization sources with both mass spectrometry (MS) and ion mobility spectrometry (IMS). The source consisted of two electrodes of different sizes separated by a thin dielectric. Application of a high RF voltage across the electrodes generated plasma in air yielding both positive and negative ions. These reactant ions subsequently ionized the analyte vapors. The reactant ions generated were similar to those created in a conventional point-to-plane corona discharge ion source. The positive reactant ions generated by the source were mass identified as being solvated protons of general formula (H2O)nH+ with (H2O)2H+ as the most abundant reactant ion. The negative reactant ions produced were mass identified primarily as CO3, NO3, NO2, O3 and O2 of various relative intensities. The predominant ion and relative ion ratios varied depending upon source construction and supporting gas flow rates. A few compounds including drugs, explosives and amines were selected to evaluate the new ionization source. The source was operated continuously for 3 months and although surface deterioration was observed visually, the source continued to produce ions at a rate similar that of the initial conditions.  相似文献   

17.
Nitrogen (N) cycling can be an important constraint on forest ecosystem response to elevated atmospheric CO2. Our objective was to trace the movement of 15N, injected into tree sap, to labile and stable forms of soil organic matter derived partly from the turnover of tree roots under elevated (545 ppm) and ambient (394 ppm) atmospheric CO2 concentrations at the Oak Ridge National Laboratory (ORNL) FACE (Free‐Air Carbon Dioxide Enrichment) Experiment. Twenty‐four sweetgum trees, divided equally between CO2 treatments, were injected with 3.2 g 15N‐ammonium sulfate (99 atom %), and soil samples were collected beneath the trees over a period of 89 weeks. For 16 cm deep soil samples collected beneath the study trees, there was 28% more fine root (less than or equal to 2 mm diameter) biomass under elevated CO2 (P = 0.001), but no significant treatment effect on the amounts of necromass, coarse root biomass, or on the N concentrations in tree roots and necromass. Nitrogen‐15 moved quickly into roots from the stem injection site and the 15N content of roots, necromass, and labile organic matter (i.e. particulate organic matter, POM) increased over time. At 89 weeks post‐injection, approximately 76% of the necromass 15N originated from fine root turnover. Nitrogen‐15 in POM had a relatively long turnover time (47 weeks) compared with 15N in roots (16 to 22 weeks). Over the 1.7 year period of the study, 15N moved from roots into slower cycling POM and the disparity in turnover times between root N and N in POM could impose progressive limitations on soil N availability with stand maturation irrespective of atmospheric CO2, especially if the release of N through the decomposition of POM is essential to sustain forest net primary production. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

18.
Park J  Zellers ET 《The Analyst》2000,125(10):1775-1782
Accounting for changes in temperature and ambient humidity is critical to the development of practical field vapor-monitoring instrumentation employing microfabricated sensor arrays. In this study, responses to six organic vapors were collected from two prototype field instruments over a range of ambient temperatures and relative humidities (RH). Each instrument contains an array of three unthermostated polymer-coated surface acoustic wave (SAW) resonators, a thermally desorbed adsorbent preconcentrator bed, a reversible pump and a small scrubber cartridge. Negligible changes in the vapor sensitivities with atmospheric RH were observed owing, in large part, to the temporal separation of co-adsorbed water from the organic vapor analytes upon thermal desorption of preconcentrated air samples. As a result, calibrations performed at one RH level could be used to determine vapors at any other RH without corrections using standard pattern recognition methods. Negative exponential temperature dependences that agreed reasonably well with those predicted from theory were observed for many of the vapor-sensor combinations. It was possible to select a subset of sensors with structurally diverse polymer coatings whose sensitivities to all six test vapors and selected binary vapor mixtures had similar temperature dependences. Thus, vapor recognition could be rendered independent of temperature and vapor quantification could be corrected for temperature with sufficient accuracy for most applications. The results indicate that active temperature control is not necessary and that temperature and RH compensation is achievable with a relatively simple microsensor system.  相似文献   

19.
This study reports the synthesis, characterization and gas sensing applications of N-cyclohexylmethacrylamide (NCMA) monomer material using FT-IR, 1H and 13C NMR, UV-visible spectroscopy, Quartz Crystal Microbalance (QCM) and Langmuir-Blodgett (LB) thin film deposition techniques. The thin film deposition conditions of NCMA monomer material, which are prepared by LB film technique, are characterized by UV-visible spectroscopy and QCM system. The sensing behaviors of the LB film with respect to volatile organic compounds (VOCs) at room temperature are investigated. Surface pressure change as a function of surface area of NCMA molecule at the water surface shows a well-organized and stable monolayer at 18 mN m?1 surface pressure value for LB film deposition. Transfer ratio values are found to be ≥ 0.94 for quartz glass and ≥ 0.93 for quartz crystal substrate. The typical frequency shift per layer is obtained 20.10 Hz/layer and the deposited mass onto a quartz crystal is calculated as 824.62 ng/layer. The sensing responses of the LB films against chloroform, dichloromethane, acetone, toluene, benzene and ethanol are measured by QCM system. The sensitivities of the NCMA LB film sensor are determined between 0.085 and 0.029 Hz ppm?1. Sensitivities with detection limits are between 35.29 and 100.33 ppm against organic vapors. These results can be concluded that the monomer LB film sample is found to be significantly more sensitive to chloroform and dichloromethane vapors than others organic vapors used in this work. This material may find potential applications in the development of room temperature organic vapor sensing.  相似文献   

20.
Matrix assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) has been used to determine peptide distributions directly from rat, mouse and human pituitary tissue sections. Since these organs are small (102–103 μm) the spatial resolution of IMS is a key issue in molecular imaging of pituitary tissue sections. Here we show that high-resolution IMS allows localization of neuropeptide distributions within different cell clusters of a single organ of a pituitary tissue section. The sample preparation protocol does not result in analyte redistribution and is therefore applicable to IMS experiments at cellular length scales. The stigmatic imaging mass spectrometer used in this study produces selected-ion-count images with pixel sizes of 500 nm and a resolving power of 4 μm, yielding superior spatial detail compared to images obtained in microprobe imaging experiments. Furthermore, we show that with imaging mass spectrometry a distinction can be made between different mammalian tissue sections based on differences in the amino acid sequence of neuropeptides with the same function. This example demonstrates the power of IMS for label-free molecular imaging at relevant biological length scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号