首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new chemically modified carbon paste electrode by 2,2?-((pyridine-2,6-diylbis(azanylylidene))bis(methanylylidene))diphenol (L) ligand has been made and used as a sensor for determination of trace mercury and cadmium ions with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. Complexation studies of the ligand with Cu2+, Zn2+, Hg2+, Ni2+ and Cd2+ ions by conductometric method in acetonitrile–ethanol mixture at 25°C show that the ML complexes have formed. The formation constants of complexes were calculated from the computer fitting of the molar conductance–mole ratio data, and the stability of the resulting complexes varied in order of Cd2+ > Hg2+ > Cu2+ > Zn2+ > Ni2+. Then a simple and effective chemically modified carbon paste electrode with L was prepared, and the electrochemical properties and applications of the modified electrode were investigated. Under the optimal conditions, the detection limit was 0.0494 μg L?1 and 0.0782 μg L?1 for cadmium and mercury ions, respectively, and the linear range for both metal ions were from 1 to 100 μg L?1. The electrode shows high sensitivity, reproducibility and low cost, and was successfully applied to determination of Cd2+ and Hg2+ ions in water samples with recovery in the range of 97–101%.  相似文献   

2.
ABSTRACT

In this approach, a new carbon paste electrode modified with N,N′-bis(5-bromo-2-hydroxybenzylidene)-2,2-dimethylpropane-1,3-diamine Schiff base ligand (L) was synthesised for selective and effective determination of Hg2+ ions in aqueous environmental samples using cyclic and square wave anodic stripping voltammetric methods. First, the selective detection of mercury ion was confirmed by evaluating the stability constants of metal complexes formed between the Schiff base ligand (L) and some desired cations by conductometric measurements. Afterwards, by preparing an effective carbon paste electrode modified with L, the experimental and instrumental parameters affecting the performance of modified electrode were investigated. Square wave anodic stripping voltammograms were obtained after applying an accumulation potential ?0.5 V and accumulation time 150 s in Britton–Robinson buffer solution at pH 2.0. The optimal square wave parameters found are pulse amplitude 75 mV, frequency 50 Hz and step potential 6 mV. The procedure exhibited linear range from 0.4 to 120 μg L?1 Hg2+ with a limit of detection of 0.042 μg L?1. The proposed electrode was proved to be highly selective in the presence of various cations and anions and was successfully used for determination of mercury in tobacco and several water samples.  相似文献   

3.
In this research, a new strategy for construction of a development potentiometric carbon paste Zn2+-ion selective electrode based on a novel nano-sensing layer is suggested. The proposed nano-sensing layer was prepared with the addition of a synthesised Zn2+-ion imprinted polymer nanoparticles ‘as an efficient sensing agent’ into the carbon paste matrix consisting of graphite powder, nanographene-composite ‘graphene nanosheets decorated with silver nanoparticles’ and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ‘ an ionic liquid ’, as the conducting binder. Under the optimised experimental conditions, the suggested nanographene-composite potentiometric sensor presented a low detection limit of 1.93 × 10?1 μg L?1 and a linear analytical range from 2.62 × 10?1 to 6.54 × 105 μg L?1 with an excellent Nernstian slope of 29.80 mV decade?1. The proposed zinc selective sensor was successfully applied for the highly sensitive determination of trace amounts of Zn2+ in environmental and biological samples with satisfactory results.  相似文献   

4.
A novel and effective potentiometric sensor for the rapid determination of Cd2+ based on carbon paste electrode consisting of the room temperature ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate, multiwalled carbon nanotubes, silica nanoparticles and ionophore was constructed. The prepared composite has a low potential drift, high selectivity and fast response time, which leads to a more stable potential signal. A linear dynamic range of 4.50×10?9–1.00×10?1 mol L?1 with a detection limit of 2.00×10?9 mol L?1 was obtained. The modified electrode was successfully applied to the accurate determination of trace amounts of Cd2+ in environmental and biological samples.  相似文献   

5.
A novel potentiometric sensor, based on carbon paste electrode (CPE), modified with ion-imprinted polymer (IIP) and multi-walled carbon nanotubes (MWCNTs), is introduced for detection of chromium (III). The IIP nanomaterial was synthesised and characterised by using scanning electron microscopy and Fourier Transform Infrared. The modification of the CPE with the IIP (as a ionophore) resulted in an all-solid-state Cr(III)-selective sensor. However, the presence of appropriate amount of MWCNTs in the electrode composition was found to be necessary to observe Nernstian response. The optimised electrode composition was 76.7% graphite, 14.3% binder, 5% IIP, and 4% CNT. The proposed sensor exhibited Nernstian slope of 20.2 ± 0.2 mV decade?1 in the working concentration range of 1.0 × 10?6?1.0 × 10?1 mol L?1 (52 µg L?1–5.2 g L?1), with a detection limit of 5.9 × 10?7 mol L?1 (30.68 µg L?1) and a fast response time of less than 40 s. It displayed a stable potential response in the pH range of 2–5. It exhibited also high selectivity over some interfering ions. The proposed sensor was successfully applied for the determination of Cr(III) in real samples (sea, river water and soil).  相似文献   

6.
In this work, a glassy carbon electrode (GCE) modified with poly (diphenylamine)/multi-walled carbon nanotubes-β-cyclodextrin (PDPA/MWCNT-β-CD) film was constructed and used for the determination of 4-nitrophenol (4-NP). Diphenylamine was successfully electropolymerised onto MWCNT-β-CD-modified GCE by cyclic voltammetry in monomer solution and 5 mol L?1 H2SO4. The surface morphology of PDPA/MWCNT-β-CD film was characterised using scanning electron microscopy and electrochemical impedance spectroscopy. After adsorption of 4-NP on PDPA/MWCNT-β-CD at 0.2 V for 150 s, it showed a well-defined reduction peak in phosphate buffer solution at pH = 7. The PDPA/MWCNT-β-CD film enhanced the reduction peak current due to the complex formation between β-CD and 4-NP, presence of conductive polymer film as electron transfer mediator and also ability of MWCNTs for strong adsorptive and catalytic effect. Peak current increased linearly with 4-NP concentration in the range of 0.1 to 13.9 µg L?1. The detection limit was obtained as 0.02 µg L?1, which is better than other reported detection limits for the determination of 4-NP. The results showed that modified electrode has good sensitivity and selectivity. This sensor was used for the determination of 4-NP in water samples.  相似文献   

7.
《Analytical letters》2012,45(5):763-777
A multiwall carbon nanotube titanium dioxide nanoparticle modified carbon paste electrode was used for direct determination of methimazole. The nanoparticles in the carbon paste increased the surface area of the electrode and improved the sensitivity by enhancing the peak current. The electrochemical behavior of methimazole on the modified electrode was investigated. Experimental variables such as pH and electrode composition were optimized. At the optimum pH 7.0 (universal buffer), the modified electrode had a linear dynamic range of 0.5 to 100.0 μmol L? 1 (0.1–11.4 ppm) with a limit of detection of 0.17 μmol L? 1 . The application of the electrode for the determination of methimazole in pharmaceuticals and blood serum was investigated.  相似文献   

8.
A hexagonal mesoporous silica (HMS) functionalized with a 5-mercapto-1-methyltetrazole derivative was employed to prepare a chemically modified carbon paste electrode for Pb(II) detection in aqueous solution by square wave adsorptive stripping voltammetry. The optimal operating conditions were 5 min preconcentration time at pH 6.5, and 120 s electrolysis time in 0.2 mol L?1 HCl. Under these conditions, the voltammetric signal increased linearly with the preconcentration time in the range 1 to 10 min and with the Pb(II) concentration in the range 1 to 100?µg L?1. The electrode was reproducible and sensitive. Simultaneous determination of Pb, Cd and Cu was also carried out with the electrode. The accuracy of the method was validated by analysing Pb(II) in tap water and groundwater samples.  相似文献   

9.
A glassy carbon electrode coated the film of 4‐tert‐butyl‐1‐(ethoxycarbonylmethoxy)thiacalix[4]arene is designed for the determination of trace amounts of Hg2+. Compared with bare glassy carbon electrode, the modified electrode can improve the measuring sensitivity of Hg2+. Under the optimum experimental condition, the modified electrode in 0.1 mol L?1 H2SO4 + 0.01 mol L?1 KCl solution shows a linear voltammetric response in the range of 8.0 × 10?9 ~ 3.0 × 10?6 mol L?1 with detection limit 5.0 × 10?9 mol L?1 for Hg2+. The high sensitivity, selectivity, and stability of modified electrode also prove its practical application for a simple, rapid and economical determination of Hg2+ in water samples.  相似文献   

10.
《Electroanalysis》2006,18(22):2174-2179
A new modified carbon paste electrode (CPE) based on a recently synthesized ligand of Ethyl‐2‐(benzoylamino)‐3‐(2‐hydroxy‐4‐methoxyphenyl)‐2‐propenoate (EBHMP) as a suitable carrier for Hg2+ ion was described. The electrode exhibit a super Nernstian slope of 48.5±1.0 mV per decade for Hg2+ ion over a wide concentration range from 3.0×10?7–3.1×10?2 M. The lower detection limits are 1.0×10?7 M Hg2+. The electrode has a fast response time (ca. 5 s), a satisfactory reproducibility and relatively long life time. The proposed sensor shows a fairly good selectivity toward Hg2+ ion in comparison to other common cations. The potentiometric responses are independent of the pH of the test solution in the pH range 1.0–4.0. The proposed electrode was used as an indicator electrode in potentiometric titration of mercuric ion with standard solution of EDTA. The direct determination of mercury in spiked wastewater and an amalgam sample gave results that compare favorably with those obtained by the cold vapor atomic absorption spectrometric method.  相似文献   

11.
《Analytical letters》2012,45(2):248-258
A poly(diallyldimethylammonium chloride)-graphene-multiwalled carbon nanotube modified glassy carbon electrode was fabricated and evaluated by cyclic voltammetry and differential pulse voltammetry. The modified electrode offered high sensitivity, selectivity, excellent long-term stability, and electrocatalytic activity for uric acid and dopamine. This sensor showed wide linear dynamic ranges of 5.0 to 350.0 µmol L?1 for uric acid and 10.0 to 400.0 µmol L?1 for dopamine in the presence of 500 µmol L?1 ascorbic acid. The limits of detection were 0.13 for uric acid and 0.55 µmol L?1 for dopamine. This functionalized electrode has potential application in bioanalysis and biomedicine.  相似文献   

12.
This study describes the utilisation of a glassy carbon electrode modified with a composite of multi-walled carbon nanotube and Cr-based metal-organic framework (MIL-101, Cr-BDC, BDC = 1,4-benzenedicarboxylate) for the sensitive, simple and fast voltammetric determination of picloram in environmental samples. Under optimum conditions, additions of picloram using square wave voltammetry showed linear ranges of picloram concentrations from 24.15 to 3018 µg?L?1 (0.1–12.5 μM) and from 3018 to 9658 µg?L?1 (12.5–40 μM) with a detection limit of 14.49 µg?L?1 (0.06 µM). The method was successfully applied to the determination of picloram in tap and river water samples spiked with picloram without any purification step by the standard addition method. The good recovery values obtained ranging from 97.5% to 105.0% revealed the reliability and accuracy of the method.  相似文献   

13.
In the present work, a green synthetic method for producing nitrogen-doped carbon dots (NCDs) by using ammonium citrate and urea is introduced. The obtained NCDs were characterised by transmission electron microscopy, Fourier transform infrared spectra, UV–vis absorption and fluorescence spectra. The results showed that the prepared NCDs were spherical with a size of about 3.5 nm, emitting strong and stable blue fluorescence when excited at 352 nm. It was noting that the NCDs enable sensitive and selective determination of Hg2+ in tap water with a linear range of 0.01–5 mg L?1 based on a possible charge transfer process. The detection limit was 9.4 µg L?1.  相似文献   

14.
《Analytical letters》2012,45(13):2091-2104
A carbon composite electrode modified with copper (II) phosphate immobilized in a polyester resin (Cu3(PO4)2-Poly) was proposed for the voltammetric determination of catechin in teas. The modified electrode allows the determination of catechin (CAT) at lower potential than that observed at an unmodified electrode. Several parameters that can influence the voltammetric response of the proposed electrode such as carbon composite composition, pH of electrolyte, and others were investigated. The peak current was proportional to the concentration of catechin in the range from 9.9 × 10?8 to 1.2 × 10?6 mol L?1, with a detection limit of 5.8 × 10?8 mol L?1. The stability and repeatability of the electrode for the determination of catechin were discussed, and the modified electrode was applied with success in the determination of catechin in teas.  相似文献   

15.
《Analytical letters》2012,45(8):883-893
A multi-wall carbon nanotubes (MWNTs) and cobalt(II) tetrakisphenylporphyrin (Co(II)TPP) modified glassy carbon electrode (MWNTs/Co(II)TPP/GCE) has been prepared. It can be used for individual or simultaneous determination of hydroquinone (HQ) and catechol (CC). The anodic peaks of HQ and CC can be separated well. Owing to the unique properties of MWNTs and special synergistic effect of MWNTs and Co(II)TPP, the modified electrode exhibited a remarkable and stable current response for CC and HQ. The linear ranges for CC and HQ were 1.0–450.0 µmol L?1 and 0.8–400.0 µmol L?1 with detection limits of 0.8 µmol L?1 and 0.5 µmol L?1, respectively. Furthermore, Co(II)TPP, MWNTs, and Co(II)TPP/MWNTs composite were also used to construct modified electrodes and the electrochemical performances were studied.  相似文献   

16.
《Analytical letters》2012,45(12):1887-1897
Abstract

The application of bismuth film electrodes to the determination of cobalt by constant current adsorptive stripping potentiometry with exploitation of a catalytic effect is presented. The addition of NaNO2 to the solution containing ammonia buffer and dimethylglyoxime results in a 25‐fold enhancement of the adsorptive stripping potentiometric cobalt signal. Several key parameters of the potentiometric stripping mode were optimized, including the composition of the supporting electrolyte, the stripping current, the accumulation potential, and the accumulation time. The optimized procedure yields favorable and highly stable stripping responses with good precision (RSD=1.4% for a Co concentration of 2 µg L?1), low detection limit (0.07 µg L?1), and good linearity (up to 10 µg L?1, R2=0.998) with a deposition time of 60 s and a stripping current of 10 µA. The method enables the determination of Co in the presence of high excesses of Ni or Zn.  相似文献   

17.
An electrochemical oxidation route was developed for sensitive and selective assay of nitrotriazolone (NTO) explosive in some environmental samples on a multi-walled carbon nanotube (MWCNTs)/TiO2 nanocomposite paste electrode, for prevention of the analytical interference of conventional reducible energetic compounds. Detailed evaluations were made for the electrochemical behaviour of NTO on the modified electrode by adsorptive stripping voltammetry, electrochemical impedance spectroscopy (EIS) and chronoamperometry techniques in the pH range of 2.0–10.0. Parameters such as diffusion coefficient constant of NTO were calculated, and various experimental conditions were also optimised. Under optimal conditions the calibration curve had two linear dynamic ranges of 130.0–3251.5 μg L?1 and 6.5–26.0 mg L?1 with a detection limit of 26.0 μg L?1 (0.2 μmol L?1) and precision of <3%. This electrochemical sensor was further applied to determine NTO in real soil and water samples with satisfactory results.  相似文献   

18.
We report on the design of a UO22+‐selective electrode based on the use of UO22+ imprinted polymer nanoparticles (IP‐NPs), and its application for the differential pulse adsorptive cathodic stripping voltammetry determination of uranyl ions. A carbon paste electrode was modified with the IP‐NPs, and differential pulse adsorptive cathodic stripping voltammetry was applied as the detection technique after open‐circuit sorption of UO22+ ions. The modified electrode responses to UO22+ was linear in the 0.1 µg L?1 to 10 µg L?1 and in the 0.01 mg L?1 to 10 mg L?1. The method detection limit of the sensor was 0.03 µg L?1.  相似文献   

19.
《Analytical letters》2012,45(5):761-777
This article reviews the use of square wave anodic stripping voltammetry for the simultaneous determination of ecotoxic metals (Pb, Cd, Cu, and Zn) on a bismuth-film (BiFE) electrode. The BiFE was prepared in situ on a glassy-carbon electrode (GCE) from the 0.1 mol L?1 acetate buffer solution (pH 4.5) containing 200 µg L?1 of bismuth (III). The addition of hydrogen peroxide to the electroanalytical cell proved beneficial for the interference-free determination of Cu (II) together with zinc, lead, and cadmium, using the BiFE. The experimental variables were investigated and optimized with the view to apply this type of voltammetric sensor to real samples containing traces of these metals. The performance characteristics, such as reproducibility, decision limit (CCa), detection capability (CCβ), sensitivity, and accuracy indicated that the method holds promise for trace Cu2+, Pb2+, Cd2+, and Zn2+ levels by employment of Hg-free GCE with SWASV. CCa, and CCβ were calculated according to the Commission Decision of 12 August 2002 (2002/657/EC). Linearity was observed in the range 20–280 µg L?1 for zinc, 10–100 µg L?1 for lead, 10–80 µg L?1 for copper, and 5–50 µg L?1 for cadmium. Using the optimized conditions, the stripping performance of the BiFE was characterized by low limits of detection (LOD). Finally, the method was successfully applied in real as well as in certified reference water samples.  相似文献   

20.
In this study, a carbon paste electrode modified with a novel 1-(3-aminopropyl) imidazole functionalised crosslinked chlorosulfonated poly(styrene)-divinyl benzene polymer was used for selective and sensitive determination of the trace amounts of Pb2+, Cu2+ and Hg2+ ions by square wave anodic stripping voltammetry. The effect of some parameters such as paste composition, pH, preconcentration time, reduction potential and time, type of supporting electrolyte and potential scan rate on the determination of metal ions were investigated to find the optimal conditions. The effective open-circuit accumulation of the studied metal ions was succeeded only by the modification of the carbon paste electrode with functional polymer. For 6 min open-circuit preconcentration, the detection limit of Pb2+, Cu2+ and Hg2+ was found to be 5, 9 and 14 µgL?1, respectively at 100 mVs?1. The results confirmed that the lower concentration levels of these trace metal ions can be determined with the increase of preconcentration time and/or potential scan rate. Good detection limits and large dynamic concentration ranges were also obtained for their binary and ternary mixtures. The optimised method was successively applied to determine the concentration of Pb2+, Cu2+ ions in the tap water sample and Cu2+ ion in the waste water sample in the presence of possible interfering species (RSD<1%, recoveries 96–110% for 4 min preconcentration).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号