首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A chelating matrix prepared by immobilising folic acid on silica gel-bound amine phase was used as a new solid-phase extractant. This sorbent has been developed only for preconcentration of trace Pb(II) prior to determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions were investigated by batch and column procedures. The optimum pH value for the separation of Pb(II) on the new sorbent was 4.0. The adsorbed Pb(II) was quantitatively eluted by 2.0?cm3 of 0.5?mol?dm?3 of HCl. Common coexisting ions did not interfere with the separation and determination of Pb(II). The maximum static adsorption capacity of the sorbent under optimum conditions was found to be 69.23?mg?g?1 for Pb(II). The detection limit of the method defined by International Union of Pure and Applied Chemistry was 0.28?ng?cm?3. The relative standard deviation (RSD) of the method was lower than 2.0% (n?=?8). The developed method has been validated by analysing certified reference materials and successfully applied to the determination of Pb(II) in water samples with satisfactory results.  相似文献   

2.
A new sorbent S-benzyldithiocarbazate (SBDTC) modified activated carbon (AC-SBDTC) was prepared and studied for preconcentration for trace mercury(II) prior to inductively coupled plasma atom emission spectrometry (ICP-AES). The experimental conditions were optimised with respect to different experimental parameters using both batch and column procedures in detail. The optimum pH value for the separation of Hg(II) on the new sorbent was 3, while the adsorption equilibrium was achieved in less than 5?min. Complete elution of the adsorbed metal ions from the sorbent surface was carried out using 5?mL of 0.25?mol?L?1 of HCl and 2% CS(NH2)2. Common coexisting ions did not interfere with the determination. The maximum static adsorption capacity of the sorbent under optimum conditions was found to be 0.55?mmol?g?1. The detection limit of the present method was found to be 0.09?ng?mL?1, and the relative standard deviation (RSD) was lower than 2.0%. The procedure was validated by analysing the certified reference river sediment material (GBW 08301, China), the results obtained were in good agreement with standard values. This sorbent was successfully employed in the separation and preconcentration of trace Hg(II) from the natural water samples yielding 80-fold concentration factor.  相似文献   

3.
A new sorbent was successfully prepared by immobilizing creatine on activated carbon and then used for separation/preconcentration of trace Hg(II) prior to detection by inductively coupled plasma optical emission spectrometry (ICP-OES). Experimental conditions including pH, sample flow rate and volume, eluting variables and tolerance limit of interfering ions were evaluated and established. At pH 1.0 and flow rate of 2.5?mL?min?1, Hg(II) was adsorbed quantitatively on the column, then quantitatively eluted by 2.0?mL 0.1?mol?L?1 nitric acid solution; other transition metal ions did not interfere with the determination of Hg(II). An enrichment factor of 100 was obtained for Hg(II). The maximum adsorption capacity was 49.5?mg?g?1. Under the optimal conditions, the value of the detection limit (3σ) was 0.06?ng?mL?1, and the relative standard deviation (RSD) calculated was lower than 3.0% (n?=?8). The methodology was validated by analyzing certified reference materials and successfully applied to the determination of trace Hg(II) in natural water samples with satisfactory results.  相似文献   

4.
Immobilization of β-cyclodextrin on Dowex resin as an insoluble polymeric matrix by covalent bond presents a new solid-phase medium for preconcentration of Pb (II) at trace level in environmental samples prior to its flame atomic absorption spectrometric determination. The method is based on the sorption of lead after passing on modified Dowex sorbent in a column. The effect of several parameters such as pH, flow rate of sample, eluent kind and volume was investigated. The sorption capacity of the matrix has been found to be 0.4996?mg?g?1 of adsorbent with the preconcentration factor of 250 for Pb (II). Nitric acid (3 M) as an eluent was sufficient to obtain quantitative recovery (>95%) for Pb (II). The optimum flow rate was 10?ml?min ?1. The calibration curve was linear in the range of (3–250?ng?mL?1) with a correlation coefficient of 0.9995. The limit of detection (LOD) based on three times the standard deviation of the blank was 1.37?ng?mL?1. The relative standard deviation (RSD) for determination of 10?ng?mL?1 and 100?ngmL?1 of Pb (II) was 3.00 % and 0.58 % (n?=?10), respectively. The method was successfully applied to determination of lead in some environmental samples such as tap water, river water, soil and rice.  相似文献   

5.
Ofloxacin was successfully used as a chemical modifier to improve the reactivity of silica gel in terms of selective binding and extraction of heavy metal ions. This new functionalised silica gel (SG-ofloxacin) was as an effective sorbent for the solid-phase extraction (SPE) of Cd(II) and Pb(II) in biological and natural water samples and their determination by inductively coupled plasma optical emission spectrometry (ICP-OES). Experimental conditions for effective adsorption of trace levels of Cd(II) and Pb(II) were optimised with respect to different experimental parameters using the batch and column procedures. The time for 70% sorption for Cd(II) and Pb(II) was less than 2 min. Complete elution of the adsorbed metal ions from the SG-ofloxacin was carried out using 2.0 mL of 0.5 mol L?1 of HCl. Common coexisting ions did not interfere with the separation and determination at pH 4.0. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.17 and 48.69 mg g?1 for Cd(II) and Pb(II), respectively. The detection limits of the method were found to be 0.29 and 0.13 ng mL?1 for Cd(II) and Pb(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was lower than 3.0% (n = 5). The method was applied to the recovery of Cd(II) and Pb(II) from the certified reference material (GBW 08301, river sediment) and to the simultaneous determination of these cations in different water and biological samples with satisfactory results and yielding 100-folds enrichment factor.  相似文献   

6.
A new ionic liquid modified silica gel sorbent was prepared from the reaction of active silica gel with N-3-(-3-triethoxysilylepropyl)-3-methylimidazolium chloride ([(TESP)MIm]Cl). This sorbent was exploited as solid phase extractant for separation and preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). It was found that it can selectively adsorb Fe(Ш). Identification of the surface modification was performed on the basis of FT-IR. Experimental conditions for effective adsorption of trace Fe(Ш) were optimised using both batch and column procedures. At pH 3, Fe(Ш) could be quantitatively adsorbed and completely eluted by using 2?mL of 0.1?mol?L?1 of HCl. 150?mL of sample solution was adopted as the maximum sample volume and a high enrichment factor of 75 was obtained. Most common coexisting ions did not interfere with the separation and preconcentration of Fe(Ш) at optimal conditions. The maximum static adsorption capacity of the sorbent was 37.0?mg?g?1. The detection limit of the present method was 0.48?µg?L?1, and the relative standard deviation (R. S. D.) was lower than 1.7%. The method was successfully applied to the preconcentration of trace Fe(Ш) in biological and natural water samples with satisfactory results.  相似文献   

7.
In this paper, a procedure for the determination of 11 aromatic hydrocarbon-type sensitisers and their related compounds from water samples, used in the manufacture of thermal paper, is presented. The compounds were extracted using a solid-phase extraction (SPE) cartridge with an octadecyl (C18) or a phenyl-bonded silica (PH) sorbent and then determined by gas chromatography–mass spectrometry (GC–MS). Factors affecting the performance of the extraction steps were thoroughly evaluated, and their effects on the yield of the sample preparation were discussed. Under optimised experimental conditions, SPE cartridges were conditioned with 10?mL hexane followed subsequently by 10?mL methanol, loaded with water sample at 2?mL?min?1, and eluted with 10?mL hexane at 1.5?mL?min?1. The limits of detection and quantification, calculated for signal-to-noise ratios of 3 and 10, were in the range of 1–5?µg?L–1 and 2.5–10?µg?L–1, respectively. Recovery yields of the present method using river water were in the range of 88%–112% with a C18 sorbent and 86%–116% with a PH sorbent. The repeatability, expressed as a relative standard deviation, was in the range of 2.8%–11% with a C18 sorbent and 0.7%–9.7% with a PH sorbent (n?=?4). Analysis of paper mill effluents revealed the presence of aromatic hydrocarbon-type sensitisers with maximum concentrations of up to 5.2?µg?L?1.  相似文献   

8.
A solid phase extraction procedure for the separation and preconcentration of trace amounts of Cd(II) and Pb(II) using the alizarin red S modified TiO2 nanoparticles prior to their determination by flame atomic absorption spectrometry has been proposed. The influences of some analytical parameters such as pH, flow rates of sample and eluent, type and concentration of the eluent, and interfering ions on the recovery of Cd(II) and Pb(II) by the sorbent were investigated. The analytes were quantitatively sorbed from the aqueous solution at pH 5.5 onto a microcolumn packed with the sorbent and recovered with 2.0?mL of 1.5?mol?L?1 hydrochloric acid. Under the optimum experimental conditions, the detection limits for Cd(II) and Pb(II) were 0.11 and 0.30?ng?mL?1 and the relative standard deviations for ten replicate measurements of 5.0 and 50.0?ng?mL?1 of Cd(II) and Pb(II) were 2.1 and 1.9%, respectively. A sample volume of 200?mL resulted in a preconcentration factor of 100. The method was successfully applied to the determination of Cd(II) and Pb(II) in water and biological samples, and accuracy was examined by the recovery experiments, independent analysis using electrothermal atomic absorption spectrometry, and analysis of a water standard reference material (SRM 1643e).  相似文献   

9.
A new sorbent – salen impregnated silica gel – was prepared and characterised for application as a minicolumn packing for flow-injection on-line preconcentration of cadmium(II). The system was coupled with flame atomic absorption spectrometer (FI-FAAS). The optimal pH for Cd(II) sorption was in the range of 7.4–8.8 and nitric acid (1%, v/v) was efficient as eluent. Sorption was most effective within the sample flow rate up to 7?mL?min?1. Sorption capacity of the sorbent found in a batch procedure was 26.3?µmol?g?1 (2.95?mg?g?1). Enrichment factor (EF) and limit of detection (LOD) obtained for 120-second loading time were 113 and 0.26?µg?L?1, respectively. The sorbent stability in the working conditions was proved for at least 100 preconcentration cycles. The evaluated method was applied to Cd(II) determination in various water samples.  相似文献   

10.
In this work, an all the way green analytical procedure based on a silicon oxide film-solid phase extraction system is proposed for lead traces determination. From the synthesis of a solid phase extraction (SPE) system and throughout the metal preconcentration and determination only aqueous media were employed. Characterisation of the film was carried out by Scanning Electron Microscopy and Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy. Preconcentration conditions, prior to Pb(II) Electrothermal Atomic Absorption Spectrometry (ETAAS) determination, such as adsorption and desorption time, pH and temperature, were optimised. Langmuir, Freundlich and Dubinin-Radushkevich isotherm models were analysed along with the evaluation of adsorption energy and standard free energy (ΔG 0). The greatest adsorption was obtained with incubation at pH 7 and 37°C. By using a small volume of 0.5?mol?L?1 HNO3 (0.5?mL) lead was desorbed from the silicon oxide film after 2?h incubation, generating low amount of waste. The films showed better adjustment for the Langmuir model (R2 ?=?0.989). The detection limit (3.29σ) for Pb(II) was 0.228?µg?L?1. The developed procedure is 10-fold more sensitive in comparison to direct ETAAS determination. Recovery values from soft tap-water and soft well-water were above 95%. When hard water was analysed, Pb(II) adsorption was found to be interfered by Mg2+ and Ca2+. After five preconcentration cycles relative recovery was found not to decay below 90%, indicating that the silicon oxide film could be used for multiple lead determinations.  相似文献   

11.
A novel Rh(III)-imprinted amino-functionalised silica gel sorbent was prepared by a surface imprinting technique for preconcentration and separation of Rh(III) prior to its determination by inductively coupled plasma atomic emission spectrometry (ICP-AES). Compared with the traditional solid sorbents and non-imprinted polymer particles, the ion-imprinted polymers (IIPs) had higher adsorption capacity and selectivity for Rh(III). The maximum static adsorption capacity of the imprinted and non-imprinted sorbent for Rh(III) was 29.86?mg?g?1 and 11.23?mg?g?1, respectively. The imprinted Rh(III) was removed with 2?mL of 3% thiourea?+?2?mol?L?1 HCl. The obtained imprinted particles exhibited excellent selectivity and rapid kinetics process for Rh(III). The relatively selective factor (αr) values of Rh(III)/Ru(III), Rh(III)/Au(III), Rh(III)/Pt(IV), Rh(III)/Ir(IV), Rh(III)/Pd(II) were 26.7, 39.0 29.2, 28.1, 43.7, respectively, which were greater than 1. The detection limit (3σ) of the method was 0.26?µg?L?1. The relative standard deviation of the method was 1.79% for eight replicate determination of 10?µg of Rh3+ in 200?mL water sample. The method was validated by analysing standard reference material (GBW 07293), the results obtained is in good agreement with standard values. The developed method was also successfully applied to the determination of trace rhodium(III) in geological samples with satisfactory results.  相似文献   

12.
A solid phase extraction method is presented for the selective preconcentration and/or separation of trace Pb(II) on multiwalled carbon nanotubes modified with 2-aminobenzothiazole. Inductively coupled plasma optical emission spectrometry was used for detection. The effects of pH, shaking time, sample flow rate and volume, elution condition and interfering ions were examined using batch and column procedures. An enrichment factor of 100 was accomplished. Common other ions do not interfere in both the separation and determination. The maximum adsorption capacity of the sorbent at optimum conditions is 60.3?mg?g?1 of Pb(II), the detection limit (3??) is 0.27?ng?mL?1, and the relative standard deviation is 1.6% (n?=?8). The method was validated using a certified reference material, and has been applied to the determination of trace Pb(II) in water samples with satisfactory results.
Figure
2-Aminobenzothiazole modified multiwalled carbon nanotubes has been developed to separate and concentrate trace Pb(II) from aqueous samples. Parameters that affect the sorption and elution efficiency were studied in batch and column modes, and the new sorbent (MWCNTs-ABTZ) presents high selectivity and adsorption capacity for the solid phase extraction of trace Pb(II).  相似文献   

13.
Mg-, Al and Mg-, Cu-, Al-layered double hydroxides well-known synthetic hydrotalcite-like sorbents, were used for the first time as carriers for indicators in the sorption catalytic determination of copper(II) and L-α-alanine. Mg-, Al and Mg-, Cu-, Al-layered double hydroxides were synthesized by coprecipitation and characterized using infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The adsorption of 0.50?mg?L?1 copper(II) solution by Mg-, Al-layered double hydroxides followed a pseudo-second-order model with an equilibrium sorption capacity of 24.2?×?10?3?mg?g?1 (3.8?×?10?4?mmol g?1) and a reaction rate constant of 4.2?g mg?1?min?1. Mg-, Al-layered double hydroxide tablets were prepared and used for sorption concentration and subsequent sensitive and selective sorption catalytic determination of 5.5?×?10?3 to 1.0?mg?L?1 copper(II) at the sorbent phase. The method was used for the analysis of natural water. A method was developed for the determination of α-alanine in Mg-, Cu-, Al-layered double hydroxide tablets with a limit of detection of 4.0?×?10?3 mol?L?1. In addition, thin layers of Mg-, Cu-, Al-layered double hydroxide were used to separate α-alanine and determine α-amino acids by thin-layer chromatography.  相似文献   

14.
Six diethylene triamine pentaacetic acid (DTPA) bisamide derivatives functionalized with p‐toluidine (DTPA‐BTolA), 6‐aminocoumarin (DTPA‐BCoumA), 1‐naphthalene methylamine (DTPA‐BNaphA), 4‐ethynylaniline (DTPA‐BEthA), p‐dodecylaniline (DTPA‐BC12PheA) and p‐tetradecyl‐aniline (DTPA‐BC14PheA) were coordinated to dysprosium(III) and the magnetic and optical properties of the complexes were examined in detail. The complexes consisting of amphiphilic ligands (DTPA‐BC12PheA and DTPA‐BC14PheA) were further assembled into mixed micelles. Upon excitation into the ligand levels, the complexes display characteristic DyIII emission with quantum yields of 0.3–0.5 % despite the presence of one water molecule in the first coordination sphere. A deeper insight into the energy‐transfer processes has been obtained by studying the photophysical properties of the corresponding GdIII complexes. Since the luminescence quenching effect is decreased by the intervention of non‐ionic surfactant, quantum yields up to 1 % are obtained for the micelles. The transverse relaxivity r2 per DyIII ion at 500 MHz and 310 K reaches a maximum value of 27.4 s?1 mM ?1 for Dy‐DTPA‐BEthA and 36.0 s?1 mM ?1 for the Dy‐DTPA‐BC12PheA assemblies compared with a value of 0.8 s?1 mM ?1 for Dy‐DTPA. The efficient T2 relaxation, especially at high magnetic field strengths, is sustained by the high magnetic moment of the dysprosium ion, the coordination of water molecules with slow water exchange kinetics and long rotational correlation times. These findings open the way to the further development of bimodal optical and magnetic resonance imaging probes starting from single lanthanide compounds.  相似文献   

15.
Polyhydroxy polyurethane sorbent was modified by the addition of halogen atoms to its matrix to produce a new sorbent distinguished by high surface polarity, enhanced capacity, and improved stability in both acidic and alkaline media. Halo polyhydroxy polyurethane foam (X-PPF) was characterized by NMR, FTIR, UV–Vis, Raman spectroscopy, pHZCP values, and scanning electron microscopy images. Experimental studies have proven that X-PPFs have a great potential for the extraction and recovery of cobalt ions and this was attributed to the presence of halogen, phenolic, and urethane groups. The pHZCP value of X-PPFs was determined to be 0.91 and the maximum metal recovery was achieved at a pH range of 6–7. The kinetics of the process was best described by pseudo-second-order model (R2?=?1). ΔH, ΔS, and ΔG values were calculated to be ?57.2?kJ?mol?1, ?172.6?J?K?1?mol?1, and ?5.8?kJ?mol?1, respectively. A perfect isotherm curve with zero intercept (0.002), good correlation (R2?=?0.999), and capacity of 246.8?mg?g?1 was obtained.  相似文献   

16.
The authors describe a method for the trace determination of copper (II) and lead (II) in water and fish samples using solid-phase extraction via siliceous mesocellular foam functionalised by dithizone. Siliceous mesocellular was functionalised with dithizone, and the resulting sorbent was characterised by scanning electron microscopy, surface area analysis, thermogravimetric/differential thermal analysis and FTIR. Following solid-phase extraction of target ions by the sorbent, copper and lead ions were quantified by flame atomic absorption spectrometry. Factors affecting the sorption and desorption of target ions by the sorbent were evaluated and optimised. The calibration plot is linear in the 1 – 500 μg L?1 copper (II) and 3–700 μg L?1 lead (II) concentration range. The relative recovery efficiency in real sample analysis is in the range from 96 to 102%, and precision varies between 1.7 and 2.8%. It is should be noted that the limits of detection for the copper and lead analysis were 0.8 and 1.6 μg L?1, respectively. Also, the adsorption capacities for copper and lead ions were 120 and 160 mg g?1, respectively. The obtained pre-concentration factor for the lead and copper ions by the proposed solid-phase extraction was 75. The method was successfully applied to the determination of low levels of copper (II) and lead (II) in tap, Caspian sea, Persian gulf and lake water and also their detection in fish samples.  相似文献   

17.
This paper describes our research on the synthesis of the sorbent with chemically bonded ketoimine groups, and, furthermore, using this sorbent in the SPE technique to extract and preconcentrate trace amounts of metal ions in water samples. Surface characteristics of the sorbent were determined by elemental analysis, NMR spectra for the solid phases (29Si CP MAS NMR), and analysis of pore size distribution of the sorbent and nitrogen adsorption-desorption. The newly proposed sorbent with ketoimine groups was applied for the extraction and preconcentration of trace amounts of Cu (II), Cr (III) and Zn (II) ions from the water from a lake, post-industrial water and purified water unburdened back to the lake. The determination of the transition-metal ions was performed on an emission spectroscope with inductively coupled plasma ICP-OES. For the batch method, the optimum pH range for Cu (II) and Cr (III) extraction was equal to 5, and Zn(II)–to 8. All the metal ions can be desorbed from SPE columns with 10?mL of 0.5?mol?HNO3. The detection limits of the method were found to be 0.7?µg?L?1 for Cu (II), 0.08?µg?L?1 for Cr (III), and 0.2?µg?L?1 for Zn (II), respectively.  相似文献   

18.
In the present study, the ?5-(4-dimethylaminobenzylidene)rhodanin-modified SBA-15? was applied as stable solid sorbent for the separation and preconcentration of trace amounts of cobalt ions in aqueous solution. SBA-15 was modified by ?5-(4-dimethylaminobenzylidene)rhodanin reagent. The sorption of Co2+ ions was done onto modified sorbent in the pH range of 6.8–7.9 and desorption occurred in 5.0 mL of 3.0 mol L?1 HNO3. The results exhibit a linear dynamic range from 0.01 to 6.0 mg L?1 for cobalt. Intra-day (repeatability) and inter-day (reproducibility) for 10 replicated determination of 0.06 mg L?1 of cobalt was ±1.82% and ?±1.97%?. Detection limit was 4.2 µg L?1 (3Sb, n = 5) and preconcentration factor was 80. The effects of the experimental parameters, including the sample pH, flow rates of sample and eluent solution, eluent type and interference ions were studied for the preconcentration of Co2+. The proposed method was applied for the determination of cobalt in standard samples, water samples and agricultural products.  相似文献   

19.
《Electroanalysis》2004,16(21):1771-1776
In this work a dysprosium [Dy(III)]‐selective solvent polymeric membrane sensor based on N,N‐bis(pyrrolidene) benzne‐1,2‐diamine, poly(vinyl chloride)(PVC), the plasticizer benzylacetate (BA), and anionic site is described. This sensor responds to Dy(III) activity in a linear range from 1.0×10?5 to 1.0×10?1 M, with a slope of 20.6±0.2 mV per decade and a detection limit of 6.0×10?6 M at the pH range of 3.5–8.0. It has a fast response time of<20 s in the entire concentration range, and can be used for at least 2 months without any considerable divergence in the electrode potentials. The proposed sensor revealed comparatively good selectivity with respect to common alkali, alkaline earth, transition and heavy metal ions. It was used as an indicator electrode in the potentiometric titration of fluoride ions and in determination of concentration of F ions in some mouth washing solutions.  相似文献   

20.
Attapulgite modified with 2-hydroxy-1-naphthaldehyde was prepared and applied to the separation, preconcentration and determination of Cu(II) in aqueous solutions by inductively coupled plasma optical emission spectrometry. Experimental conditions for effective adsorption of trace levels of Cu(II) were optimized using batch and column procedures. The optimum pH value for the separation of Cu(II) on the newly sorbent was 4.0 and complete elution of Cu(II) from the sorbent surface was carried out using 2 mL of 0.01 mol L?1 HCl. The adsorption capacity for Cu(II) was 25.13 mg g?1. The detection limits of the method defined by IUPAC were found to be 0.24 μg L?1 with enrichment factor of 150. The method has been applied to the determination of Cu(II) in certified reference materials and natural water samples with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号