首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The highly boron‐doped diamond electrode (HBDD) combined with square wave voltammetry (SWV) was used in the development of an analytical procedure for diquat determination in potato and sugar cane samples and lemon, orange, tangerine and pineapple juices. Preliminary experiments realised in a medium of 0.05 mol L?1 Na2B4O7 showed the presence of two voltammetric peaks around ?0.6 V and around ?1.0 V vs. Ag/AgCl/Cl? 3.0 mol L?1, where the first peak could be successfully used for analytical proposes due the facility in the electrode surface renovation. After the experimental and voltammetric optimisation, the calculated detection and quantification limits were 1.6×10?10 mol L?1 and 5.3×10?10 mol L?1 (0.057 µg L?1 and 0.192 µg L?1, respectively), which are lower than the maximum residue limit established for fresh food samples by the Brazilian Sanitary Vigilance Agency. The proposed methodology was used to determine diquat residues in potato and sugar cane samples and lemon, orange, tangerine and pineapple juices and the calculated recovery efficiencies indicated that the proposed procedure presents higher robustness, stability and sensitivity, good reproducibility, and is very adequate for diquat determination in complex samples.  相似文献   

2.
A square wave cathodic stripping voltammetric (SWCSV) method has been developed for the determination of insecticide diafenthiuron. The procedure is based on controlled accumulation of the insecticide on a static hanging mercury drop electrode (SHMDE) at 0.00?mV (vs. Ag/AgCl) in Britton-Robinson buffer solution (pH 7.0). The insoluble mercury compound was reduced at ?510?mV during the cathodic potential scan. The peak currents were linearly related to insecticide concentration between 30.4 and 3200?µg?L?1 . The detection and quantification limit were 9.1?µg?L?1 and 30.4?µg?L?1, respectively. The proposed analytical procedure was applied to natural water and soil samples. The method was extended to direct determination of diafenthiuron in insecticide formulation Polo® 50 WP and average content of 50.3?±?1.7 (m/m) at 90% confidence level, in close agreement with the 50.0% quoted by the manufacturer. HPLC comparison method indicated that accuracy was in agreement with that obtained by the proposed method.  相似文献   

3.
Lucigenin chemiluminescence (CL) in conjunction with flow-injection analysis (FIA) is used for the determination of phosphate in freshwater samples. The procedure is based on the formation of molybdophosphoric heteropoly acid (MoP–HPA) by the reaction of phosphate and ammonium molybdate under acidic conditions. CL emission was observed as a result of oxidation of lucigenin in aqueous sodium hydroxide solution in the presence of MoP–HPA. Calibration was linear up to 500?µg?L?1 (r 2?=?0.9998; n?=?8), with a detection limit (S/N?=?3) of 0.95?µg?L?1. An injection throughput of 120 h?1, and relative standard deviation (RSD; n?=?4) of 1.3–3.2% were achieved in the concentration range studied. An on-line chelating column was used to remove interfering cations. The method was applied to freshwater samples, and the results (51?±?1.0 – 107?±?2.0?µg?L?1) did not differ significantly from results obtained using a spectrophotometric method (52.5?±?1.0 – 102?±?2.0?µg?L?1) at 95% confidence level (t-test).  相似文献   

4.
A cloud point extraction procedure for pre-concentration and determination of cadmium and lead in drinking water using sequential multi-element flame atomic absorption spectrometry is described. 4-(2-thiazolylazo)-orcinol (TAO) has been used as complexing agent and the micellar phase was obtained using the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) and centrifugation. The conditions for reaction and extraction (surfactant concentration, reagent concentration, effect of incubation time, etc) were studied and the analytical characteristics of the method were determined. The method allows the determination of cadmium and lead with quantification limits of 0.30?µg?L?1 and 2.6?µg?L?1, respectively. A precision expressed as relative standard deviation (RSD, n?=?10) of 2.3% and 2.6% has been obtained for cadmium concentrations of 10?µg?L?1 and 30?µg?L?1, respectively, and RSD of 1.3% and 1.7% for lead concentrations of 10?µg?L?1 and 30?µg?L?1, respectively. The accuracy was confirmed by analysis of a natural water certified reference material. The method has been applied for the determination of cadmium and lead in drinking water samples collected in the cities of Ilhéus and Itabuna, Brazil. Recovery tests have also been performed for some samples, and results varied from 96 to 105% for cadmium and 97 to 106% for lead. The cadmium and lead concentrations found in these samples were always lower than the permissible maximum levels stipulated by World Health Organization and the Brazilian Government.  相似文献   

5.
An on-line pre-concentration system for the sequential determination of cadmium and lead in drinking water by using fast sequential flame atomic absorption spectrometry (FS-FAAS) is proposed in this paper. Two minicolums of polyurethane foam loaded with 2-(6-methyl-2-benzothiazolylazo)-orcinol (Me-BTAO) were used as sorptive pre-concentration media for cadmium and lead. The analytical procedure involves the quantitative uptake of both analyte species by on-column chelation with Me-BTAO during sample loading followed by sequential elution of the analytes with 1.0?mol?L?1 hydrochloric acid and determination by FS-FAAS. The optimisation of the entire analytical procedure was performed using a Box–Behnken multivariate design utilising the sampling flow rate, sample pH and buffer concentration as experimental variables.

The proposed flow-based method featured detection limits (3σ) of 0.08 and 0.51?µg?L?1 for cadmium and lead, respectively, precision expressed as relative standard deviation (RSD) of 1.63% and 3.87% (n?=?7) for cadmium at the 2.0?µg?L?1 and 10.0?µg?L?1 levels, respectively, and RSD of 6.34% and 3.26% (n?=?7) for lead at the 5.0?µg?L?1 and 30.0?µg?L?1 levels, respectively. The enrichment factors achieved were 38.6 and 30.0 for cadmium and lead, respectively, using a sample volume of 10.0?mL. The sampling frequency was 45 samples per hour. The accuracy was confirmed by analysis of a certified reference material, namely, SRM 1643d (Trace elements in natural water). The optimised method was applied to the determination of cadmium and lead in drinking water samples collected in Santo Amaro da Purificação City, Bahia, Brazil.  相似文献   

6.
A bare graphite-epoxy composite was evaluated as an electrode material in the determination of atenolol in natural water samples and pharmaceutical formulations for which the analyte was spiked. Using a DPV procedure, a linear response was observed in the 4.45–84.7?µmol?L?1 range with a LOD?=?2.23?µmol?L?1, without need of surface renewal between successive runs, and recoveries between 92.5 and 107.5% for pharmaceutical formulations. The results obtained from the proposed procedure agreed with HPLC results within a 95% confidence level. During the determination of atenolol in water samples, recoveries between 96.1 and 102.6% were found.  相似文献   

7.
A sensitive and reliable method is described for the determination of total Sb(III,?V) at traces levels by Osteryoung square-wave anodic stripping voltammery (OSWASV). This method is based on the co-deposition of Sb(III,?V) with Bi(III) onto an edge-plane pyrolytic graphite substrate at an accumulation step. OSWASV studies indicated that the co-deposited antimony was oxidised with anodic scans to give an enhanced anodic peak at about 450?mV vs. Ag/AgCl (sat. KCl). The anodic stripping peak current was directly proportional to the total concentration of antimony in the ranges of 0.01–0.10?µg?L?1, 0.10–1.0?µg?L?1 and 1.0–18.0?µg?L?1 with correlation coefficient higher than 0.995 when 2.0?mol?L?1 hydrochloric acid was used. The detection limits calculated as S/N?=?3 was 5.0?ng?L?1 in 2.0?mol?L?1 hydrochloric acid at 180?s deposition time. The relative standard deviation was 5% (n?=?6) at 0.10?µg?L?1 level of antimony. The analytical results demonstrate that the proposed method is applicable to analyses of real water samples.  相似文献   

8.
A simple and convenient assay based on single-drop microextraction with infrared spectroscopy is reported for the determination of selenium. The extraction conditions were carefully optimized and selenium was preconcentrated through single-drop microextraction in 1,2-dichloroethane containing N-hydroxy-N-phenyl-N′-(o-tolyl) benzimidamide. The method is selective and almost all common ions including molybdenum(VI), chromium(VI), and tungsten(VI) did not interfere with the isolation protocol. The selenite band at 875?±?2?cm?1, which is assigned to the asymmetric vibrational stretch (υ3), was used for the quantification of selenium. Low limits of detection and quantification of 2.0 and 6.6?µg?L?1 demonstrate the sensitivity of the method. Good precision was evaluated by the standard deviation (2.0?µg?L?1) and relative standard deviation (0.5%) for 8?µg?L?1 was achieved for 10 measurements. The method was used to analyze human blood, urine, and water for selenium.  相似文献   

9.
The aim of this study was to develop a method for the characterization of internal exposure to arsenic, which is thought to play a role in the development of a kidney disease, known as Balkan Endemic Nephropathy, typical for a district in Bulgaria, and to investigate whether the As body burden differs in the offspring versus control individuals. For this case study, an analytical procedure for the determination of toxicologically relevant arsenic (the sum of arsenite, arsenate, monomethylarsonate, and dimethylarsinate) in urine by batch-type hydride generation atomic absorption spectrometry was developed. Optimization experiments for levelling off the sensitivity of inorganic arsenic and its mono- and dimethylated species in dilute HCl–L-cysteine medium were performed. The limit of detection for hydride forming arsenic fraction was 0.5?ng As, i.e. 0.25?µg?L?1 in 10?mL of 1?+?4 v/v diluted urine. The relative standard deviation was typically 1.5–1.8% for aqueous solution and 2–6% for urine samples at 1.0?µg?L?1 As. The sample throughput rate was 15?h?1. No statistical correlation and cross-correlation between individuals case-control and sex at 95% confidence were found: controls (n?=?99), mean 3.5?±?2.1 (SD), range 0.9–10.4, median 3.0?µg?L?1 As and cases (n?=?102), mean 3.6?±?2.2 (SD), range 0.5–11.0, median 3.2?µg?L?1 As. On the basis of this study, arsenic can be excluded as a factor involved in BEN development.  相似文献   

10.
A simple, low-cost and sensitive electroanalytical method was developed for the simultaneous determination of p-nitrophenol and o-nitrophenol isomers in water samples at a glassy carbon electrode (CGE) in the presence of cationic surfactant. The electrochemical behavior of p-nitrophenol and o-nitrophenol was studied by cyclic voltammetry (CV) in 0.1?mol L?1 acetate/acetic acid buffer (pH 3.70) in the presence and absence of cetylpyridinium bromide. The resolution of overlapped cathodic peaks potentials (Epc) of isomers was successfully improved in the presence of 100.0?µmol L?1 cetylpyridinium bromide, thus making this approach ideal for the simultaneous determination of isomers. Under the optimized conditions in 0.05?mol L?1 HEPES buffer at pH 7.0 using differential pulse voltammetry (DPV) at a scan rate of 45?mV s?1, pulse amplitude of 220?mV and modulation time of 10?ms, limits of detection 0.59?µmol L?1 for p-nitrophenol and 1.14?µmol L?1 for o-nitrophenol were obtained with linear ranges from 2.0 to 60.0?µmol L?1 and 3.0 to 60.0?µmol L?1, respectively. The intraday precision was assessed as relative standard deviation (%) for 20.0 and 40.0?µmol L?1 concentrations were 4.30% and 2.41% for p-nitrophenol and 4.87% and 2.20% for o-nitrophenol, respectively. The developed method was applied for the determination of the isomers in lake water samples. The accuracy was attested by comparison with high-performance liquid chromatography with diode array detection (HPLC-DAD) as a reference analytical technique. Recovery values ranging from 90.3% to 111.8% also attested to the accuracy of method for analysis of real samples.  相似文献   

11.
In this work a solid phase on-line uranium ion preconcentration system coupled with spectrophotometry has been developed. The method is based on uranyl ion preconcentration at pH 3.75 onto multiwall carbon nanotubes treated with HNO3. After preconcentration, the uranyl ions are eluted with 0.32?mol?L?1HCl followed by reaction with 3,6-bis[(2-arsonophenyl)-azo]-4,5-dihydroxy-2,7-naphthalendisulfonic acid 0.08%[w/v] (Arsenazo III), which had maximum monitored absorbance of 650?nm. Effects of the pertinent experimental parameters on the system were investigated by means of 26?2 fractional factorial design, while optimization was carried out using the Doehlert matrix. Under optimized conditions, detection and quantification limits were found to be 0.21 and 0.7?µg?L?1, respectively. The analytical curve ranged from 5 to 150?µg?L?1 (r?=?0.998), while the relative standard deviations (RSD) were 3.27 and 2.56% for the respective uranium concentrations of 10 and 100?µg?L?1 (n?=?10). The features obtained for the on-line preconcentration system were: preconcentration factor of 228, concentration efficiency of 57?min?1, consumption index of 0.13?mL and sample throughput of 15?h?1. In order to assess the accuracy of the proposed method, addition and recovery studies were carried out on spring water samples from different sources and synthetic seawater with satisfactory results ranging from 94.85 up to 103.65%.  相似文献   

12.
An ultraviolet-photochemical generator (UV-PVG) capable of post-column on-line transformation of both organic and inorganic mercury species to cold vapor (Hg0) with subsequent detection by quartz tube-atomic absorption spectrometry (QT-AAS) was developed. Mercury(II), methylmercury(I), ethylmercury(I), and phenylmercury(I) were successfully detected after separation by reversed-phase high-performance liquid chromatography (RP-HPLC). Two types of AAS detectors were compared. The first was a commonly used line-source instrument while the second was a high-resolution continuum source (HR-CS) AAS. The latter provided better limits of detection: 0.47?µg?L?1 for Hg(II), 0.84?µg?L?1 for methylmercury(I), 0.80?µg?L?1 for ethylmercury(I), and 2.0?µg?L?1 for phenylmercury(I). The repeatability at 30?μg?L?1 was 3.6%, 4.1%, 6.2%, and 4.5% for these species (n?=?10). These figures of merit were comparable with those reported for more sensitive atomic fluorescence spectrometry. Nine sample extraction procedures were investigated. Extraction by tetramethylammonium hydroxide and HCl at 75?°C was selected as the only method compatible with the proposed separation and detection steps providing high extraction efficiency and no changes in mercury speciation. The applicability of the proposed high-performance liquid chromatography–ultraviolet-photochemical vapor generation–quartz tube-atomic absorption spectrometry method was demonstrated using fish samples and certified reference materials (CRM) DOLT-4 (dogfish liver) and ERM-CE464 (tuna fish). The results were comparable to those obtained by a reference method based on L-cysteine extraction and high-performance liquid chromatography–inductively coupled plasma-mass spectrometry (HPLC–ICP-MS) determination.  相似文献   

13.
A procedure for the determination of As, Cd, Cr, Ni, Pb, and V in phytotherapy medicines by inductively coupled plasma–tandem mass spectrometry is reported. The use of tandem mass spectrometry with oxygen into an octopole reaction system at various gas flow rates and the combination of on-mass and mass-shift modes was evaluated. Cadmium, Cr, Ni, and Pb were determined as free atomic ions while As and V were determined as the oxides AsO+ and VO+ in the same run. Samples were prepared by microwave-assisted digestion with dilute nitric acid and hydrogen peroxide. Two plant-certified reference materials (apple leaves and tomato leaves) were used to check the accuracy. For tandem mass spectrometry with 0.5?mL min?1 O2, recoveries in the 85–113% were typically obtained and no statistical differences were observed at the 95% confidence level (t-test) in comparison with the certified values. Using these conditions, the limits of detection for the method were 0.01, 0.0002, 0.008, 0.008, 0.003, and 0.002?µg g?1 for As, Cd, Cr, Ni, Pb, and V, respectively. The procedure was used for the analysis of four phytotherapic drugs and the determined concentrations were up to 0.168?µg g?1 As, 0.03?µg g?1 Cd, 0.82?µg g?1 Cr, 1.18?µg g?1 Ni, 0.52?µg g?1 Pb, and 2.4?µg g?1 V with average precision values of 8% as the relative standard deviation. The found concentrations were compared with limits proposed in official guidelines and, in most cases, the values were below the maximum limits allowed.  相似文献   

14.
《Analytical letters》2012,45(18):3417-3429
Abstract

A flow‐injection spectrophotometric procedure was developed for determining N‐acetylcysteine in pharmaceutical formulations. The sample was dissolved in deionized water and 400 µl of the solution was injected into a carrier stream of 1.0×10?2 mol l?1 sodium borate solution. The sample flowed through a column (70 mm length×2.0 mm i.d.) packed with Zn3(PO4)2 immobilized in a polymeric matrix of polyester resin and Zn(II) ions were released from the solid‐phase reactor because of the formation of the Zn(II) (N‐acetylcysteine)2 complex. The mixture merged with a stream of borate buffer solution (pH 9.0) containing 5.0×10?4 mol l?1 Alizarin red S and the Zn(II)Alizarin red complex formed was measured spectrophotometrically at 540 nm. The analytical curve was linear in the N‐acetylcysteine concentration range from 3.0×10?5 to 1.5×10?4 mol l?1 (4.9 to 24.5 µg ml?1) with a detections limit of 8.0×10?6 mol l?1 (1.3 µg ml?1). The relative standard deviations (RSDs) were smaller than 0.5% (n=10) for solutions containing 5.0×10?5 mol l?1 (8.0 µg ml?1) and 8.0×10?5 mol l?1 (13.0 µg ml?1) of N‐acetylcysteine, and the analytical frequency was 60 determinations per hour. A paired t‐test showed that all results obtained for N‐acetylcysteine in commercial formulations using the proposed flow‐injection procedure and a comparative procedure agreed at the 95% confidence level.  相似文献   

15.
ABSTRACT

A simple and reliable analytical method using instrumentation available in most of the laboratories has been developed for the separation and determination of silver nanoparticles in water samples. Cloud point extraction (CPE) was used for the separation of silver nanoparticles (AgNPs) from the sample and these nanoparticles were then determined by electrothermal atomic absorption spectrometry (ETAAS). Parameters related to the cloud point extraction procedure (Triton X-114 concentration, type of complexing agent (EDTA or Na2S2O3), pH, incubation temperature, incubation and centrifugation time) were selected using a multivariate approach (designs of experiments); 8.6% (v/v) Triton X-114, 750 µL saturated EDTA and pH 7 were selected as the optimum conditions. Calibration standards in a concentration range from 0 to 10 µg L?1 of AgNPs were subjected to the CPE procedure to obtain quantitative recoveries. The LOD and LOQ were 0.04 and 0.13 µg L?1, respectively. The method is selective for the extraction of AgNPs, and ionic Ag remains in the aqueous phase. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) was used to evaluate the effect of the CPE procedure in particle size, and no changes were observed. Finally, the procedure was applied to wastewater samples spiked with nanoparticles with quantitative recoveries.  相似文献   

16.
A liquid-phase microextraction (LPME) method was employed for preconcentration of selenium as piazselenol complex in aqueous samples. The samples reacted with o-phenylenediamine in 0.1?M HCl at 90°C for 15?min, and then LPME was performed. A microdrop of carbon tetrachloride was applied as the extracting solvent. After extraction, the microdrop was introduced directly into the injection port of gas chromatography for analysis. Several important extraction parameters such as the type of organic solvent, sample and organic drop volumes, salt concentration, stirring rate, and exposure time were controlled and optimized. In the proposed LPME, the extraction was achieved by suspending a 3?µL carbon tetrachloride drop from the tip of a microsyringe immersed in 12.5?mL of aqueous solution. Under optimized conditions, a dynamic linear range was obtained in the range of 20–1000?µg?L?1. The preconcentration factor and the limit of detection of selenium in this method were 91 and 0.9?µg?L?1, respectively. The optimized procedure was successfully applied to the extraction and determination of selenium in different types of real samples. The relative standard deviations for the spiking levels of 50–100?µg?L?1 in the real samples were in the range of 3.2–6.1%, and the relative errors were located in the range of ?5.4 to 5%.  相似文献   

17.
A new cobalt ions pre-concentration method, optimised by fractional factorial design, using multiwall carbon nanotubes (MWCNTs) with further Graphite Furnace Atomic Absorption Spectrometry (GFAAS) quantification is described. The method explores the high chemical and physical stability of MWCNTs for improving the detectability of GFAAS. It is based on off-line pre-concentration of 20.0 mL of sample previously buffered (pH 8.82) on MWCNTs at a flow rate of 10.0 mL min?1. After the pre-concentration procedure, the elution step was carried out with 500 µL of 0.524 mol L?1 HNO3 solution at a flow rate of 2.0 mL min?1. Fractional factorial designs and response surface methodology were employed for optimisation of all chemical parameters involved in the pre-concentration procedure, including pre-concentration flow rate, buffer and eluent concentration, sample pH and elution volume. The method provides a linear calibration range from 0.03 up to 7.00 µg L?1 with linear correlation coefficient higher than 0.9994 and limits of detection and quantification of 0.01 and 0.03 µg L?1, respectively. Repeatability of the six measurements was found to be 2.38 and 1.84% for 0.3 and 4.5 µg L?1 cobalt concentration, respectively. By pre-concentrating 20.0 mL of sample, a pre-concentration factor (PF) of 19.10-fold and a consumption index of 1.05 mL were obtained. The pre-concentration efficiency (PE) was found to be 9.55 min?1. The proposed method was successfully applied for the pre-concentration and determination of cobalt in water and urine samples with satisfactory recovery values.  相似文献   

18.
AgSIE was used for the direct analysis of folic acid (FA), with a detection limit and lower level of quantitation of 6.8×10?10 mol L?1 and 2.3×10?8 mol L?1. The analysis in fresh and processed fruits was done without any sample pretreatment. In strawberry and acerola juices, FA concentration level values were below the method detection limit. FA was detectable in peach (77.7±0.4 µg L?1 and 64.4±0.5 µg L?1), Persian lime (45.4±0.7 µg L?1), pineapple Hawaii (66.2±0.4 µg L?1), pear pineapple (35.3±0.6 µg L?1), cashew (54.4±0.5 µg L?1), passion fruit (73.2±0.3 µg L?1), and apple (84.4±0.5 µg L?1).  相似文献   

19.
A procedure for determination of Cd, Pb, Cu and Ni in high-salinity waters by inductively coupled plasma optical emission spectrometry has been developed. It is based on cloud-point extraction of these metals as complexes of diethyldithiocarbamate (NaDDTC) in micellar media of non ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114). Multivariate optimisation techniques have been applied to optimise the experimental variables. A full two-level factorial design was used to evaluate the influence of variables and Doehlert design was performed to find the optimum values. The effect of interference from residual salinity in surfactant-rich phase was also investigated. The developed procedure allows to achieve enhancement factors of 20.0, 20.4, 19.5 and 20.6, along with limits of detection (3σ B) of 0.030, 2.1, 0.62 and 0.27 µg L?1, and precision expressed as relative standard deviation (%RSD, n = 10) of 3.7 (40.0 µg L?1), 5.7 (20.0 µg L?1), 6.6 (20.0 µg L?1) and 3.1% (10.0 µg L?1) for Cd, Pb, Cu and Ni, respectively. The accuracy was evaluated by spike tests on the seawater (salinity of 35‰) and petroleum produced formation waters (salinity between 15‰ and 75‰). It was obtained by recoveries between 79% and 105%.  相似文献   

20.
In this work, surfactant-coated Fe3O4@decanoic acid nanoparticles was synthesized as a viable nanosorbent for coextraction of drugs with different polarities (hydrophobic, hydrophilic). To reach desirable enrichment factors, efficient clean-up and low limits of detection (LODs), the method was combined with dispersive liquid–liquid microextraction (DLLME). The coupling of these extraction methods with GC-FID detection was applied to simultaneous extraction and quantification of venlafaxine (VLF) as a hydrophilic model drug and desipramine (DESI) and clomipramine (CLO) as hydrophobic model drugs in urine samples. The effect of sample pH, nanosorbent amount, sorption time, surfactant concentration, eluent type, eluent volume, salt content, elution time in magnetic solid phase extraction step and extraction solvent and its volume along with sample pH in DLLME step were optimized. Under the selected conditions, linearity was achieved within the range of 5–5000 µg L?1. The LOD values were obtained in the range of 1.5–3.0 µg L?1 for DESI, 1.2–2.5 µg L?1 for VLF and 2.0–4.0 µg L?1 for CLO, respectively. The percent of extraction recoveries and relative standard deviations (n?=?5) were in the range of 82.4–95.9 and 6.1 for DESI, 60.5–92.8 and 6.9 for VLF and 57.2–58.0 and 5.5 for CLO, respectively. Ultimately, the applicability of the new method was successfully confirmed by the extraction and quantification of DESI, VLF and CLO from human urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号