首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new and simple column-solid-phase extraction method has been developed to separate and preconcentrate trace cobalt in water and soil prior to its determination by flame atomic absorption spectrometry (FAAS). Different factors such as pH of sample solution, sample volume, amount of resin, flow rate of aqueous solution, volume and concentration of eluent, and matrix effects for preconcentration were optimized. Under optimized experimentally established conditions, an analytical detection limit of 0.44?µg?L?1, precision (RSD) of 1.9%, enrichment factor of 200, and capacity of resin of 82?mg?g?1 were obtained. The method was applied for cobalt determination by FAAS in tap water, natural drinking water, soil, and roadside dust samples. The accuracy of the method is confirmed by analysing standard reference material (Montana Soil, SRM 2711).  相似文献   

2.
A microwave digestion method in a closed vessel was developed for the determination of trace metals in atmospheric aerosols using inductively coupled plasma mass spectrometry (ICP-MS). A recovery study for the elements V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, and Pb was conducted using multi-elemental standard solutions, NIST 1633b Trace Elements in Coal Fly Ash, and NIST 1648 Urban Particulate Matter. A simple digestion method using only HNO3/H2O2 gave good recoveries (90%–108%) for all elements except Cr in SRM 1648, but yielded low recoveries for SRM 1633b. A more robust method using HNO3/H2O2/HF/H3BO3 yielded higher recoveries (82%–¶103%) for the lighter elements (V – Zn) in SRM 1633b, and improved the Cr recovery in SRM 1648, but decreased the Se recovery in both SRMs. A comparative analysis of aerosol samples obtained at a remote mountain location Nathiagali, Pakistan (2.5 km above mean sea level), and Mayville, New York, downwind from the highly industrialized Midwestern United States, was carried out using Instrumental Neutron Activation Analysis (INAA) for the elements Cr, Mn, Fe, Co, Zn, As, Se, and Sb. The simple digestion method yielded excellent agreement for Cr, Fe, Zn, As, Se, and Sb, with slopes of the ICP-MS vs. INAA regressions of 0.90–1.00 and R2 values of 0.96–1.00. The regressions for Mn and Co had slopes of 0.82 and 0.84 with R2 values of 0.83 and 0.82, respectively. Addition of HF/H3BO3 did not improve the correlation for any of the elements and degraded the precision somewhat. The technique provides sensitivity and accuracy for trace elements in relatively small aerosol samples used in atmospheric chemistry studies related to SO2 oxidation in cloud droplets. The ability to determine concentrations of a very large number of elements from a single analysis will permit source apportionment of various trace pollutants and hence strategies to control the sources of air pollution. This is particularly important as the health effects of particulate matter are increasingly recognized.  相似文献   

3.
A matrix removal procedure has been developed for the determination of trace elements, including As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, Se, Sn, Tl, Zn and V, in siliceous materials by inductively coupled plasma mass spectrometry (ICP-MS). Soil and sediment samples were dissolved in a mixture of HNO3 and HF in sealed vessels by using a microwave oven. Silicon matrix in the solutions was precipitated as sparingly soluble sodium fluorosilicate (Na2SiF6) by adding 0.5 mL of 300 mg mL−1 NaCl solution. Simultaneous precipitation of sodium and silicon was achieved in highly acidic solutions containing 30–40% (v/v) HNO3. A mixture of methanol and nitric acid afforded back-extraction of the trace elements without significant dissolution of the Na2SiF6. Samples were analyzed by ICP-MS for trace elements and residual silicon. Calibration was made by aqueous multi-element standard solutions. Up to 95% of the silicon was successfully removed yielding solutions suitable for introduction to ICP-MS. The method was validated by analysis of two NIST certified reference materials; SRM 2711 (Montana Soil) and SRM 2704 (Buffalo River Sediment). Accurate results were obtained for all elements, including those for As, Hg and Se that suffer from losses due to the presence of their volatile species when silicon was converted to volatile SiF4 via heat-assisted evaporation to dryness. The recoveries from the SRM samples varied between 80% (Cr) and 109% (Hg). No significant interferences were observed from molecular ions of chloride and residual sodium on 75As, 63Cu, 60Ni, 77Se and 51V. Correspondence: Zikri Arslan, Department of Chemistry, Jackson State University, Jackson, MS 39217, USA  相似文献   

4.
Instrumental neutron activation analysis (INAA) was applied to assess element concentrations in eleven samples of mineral supplements/multivitamins acquired in drugstores and pharmacies in São Paulo city, SP, Brazil. Concentrations of Ca, Co, Cr, Cu, Fe, K, Na, Se and Zn were determined. A comparison was made between the results obtained with the labels of the mineral supplents. Certified reference materials, NIST SRM1400 Bone Ash and NIST SRM 1633b Coal Fly Ash were analyzed for quality control of the analytical results.  相似文献   

5.
Long-time experience in neutron flux monitoring on irradiation in the LVR-15 research reactor in ?e? proved that Au+Mn+Rb and Au+Mo+Rb(+Zn) monitor sets for short and long irradiation, respectively, are more suitable in our conditions than the most frequently used Au+Zr set. The advantages of the former monitor set have been described previously, in the present work we discuss the advantages of the latter monitor set for long irradiations in varying active core configurations of the LVR-15 reactor. The successful application of the Au+Mo+Rb(+Zn) monitor set has been verified by comparative determination of the neutron flux parameters α (epithermal flux distribution parameter), f (thermal-to-epithermal neutron flux ratio), and F c,Au (comparator factor) using this and the Au+Zr monitor set, and by analyses of certified reference materials, namely NIST SRMs 1547 Peach Leaves, 2711 Montana Soil, and 1633b Trace Elements in Coal Fly Ash.  相似文献   

6.
In order to obtain the formation enthalpies of solid alloys in the FeSb, CoSb and NiSb systems a high-temperature calorimeter has been constructed. With this device, the solution enthalpies of the alloys and their components have been determined. The absolute values of the negative formation enthalpies which were calculated from the solution enthalpies increase within the series FeSb → CoSb → NiSb. The maximum values of the enthalpies of formation are: ΔHB = ? 0.044 kJ g-at.?1 (at 57 at.?% Fe); ΔHB = ? 27 kJ g-at.?1 (at 52 at.?% Co) and ΔHB = ? 33 kJ g-at.?1 (at 51 at.?% Ni). These, for the most part highly negative, values are indicating that considerable non-metallic contributions to the bonding energies are existing in these systems. This leads to the formation of NiAs-phases in the central parts of the concentration ranges.  相似文献   

7.
Kahakachchi C  Uden PC  Tyson JF 《The Analyst》2004,129(8):714-718
The abilities of various extractants to recover four arsenic species [As(iii), As(v), dimethylarsinic acid (DMA), and monomethylarsonic acid (MMA)] from soils spiked with 20 micro g g(-1) As were investigated. The extractants were water, buffer solutions (citrate and ammonium dihydrogen phosphate), acidic solutions (phosphoric acid and acetic acid), a basic solution (sodium hydroxide) and household chemicals (vinegar and Coca Cola). Gentle shaking at room temperature with each extractant for 24 h gave different recoveries for the different arsenic species. With 0.1 M NaOH solution 46% As(iii), 53% DMA, 100% MMA and 84% As(v) were recovered. A rapid extraction procedure using a sonicator probe has been developed to obtain higher extraction efficiencies. Extracts of arsenic-spiked soil, SRM 2711 Montana soil and SRM 2709 San Joaquin soil were analyzed by HPLC-ICP-MS. In the SRM water extracts, DMA and MMA were identified in addition to inorganic arsenic. The solution detection limits (3s) were 0.1, 0.12, 0.13 and 0.15 ng mL(-1) for As(iii), DMA, MMA and As(v), respectively for HPLC-ICP-MS.  相似文献   

8.
《Analytical letters》2012,45(8):1437-1447
Abstract

Two spectrophotometric methods involve the formation of two different ion pairs between the drug and inorganic complexes, Mo(V) and Co(II) thiocyanates followed by their extraction with dichlor?methane and o-nitrotoluene, respectively. The optimum conditions for the ion pair formation are established. The methods permit the determination of metoclopramide and oxybuprocaine hydrochlorides over a concentration range of 1-20 μg ml?1 and 20–240 μg ml?1 using Mo(V) and Co(II) thiocyanates, respectively. Molar ratio of drug to Mo(V) or Co(II) indicates a 2:1 ratio for the two drugs studied in the presence of excess thiocyanate concentration. Results of the analysis of drug substances and their dosage forms by the proposed methods are in good agreement with those obtained by the official methods.  相似文献   

9.
It is shown that stable metal complexes with ammonium pyrrolidine dithiocarbamate (APDC) are formed in strongly acidic (0.5–6 M) solutions and can be extracted into methyl isobutyl ketone (MIBK), although APDC is normally used for extractions from solutions at pH 2–12. Percentage extraction curves are presented for 24 elements (Ag, As, Au, Bi, Cd, Co, Cu, Fe, Ga, Ge, Hg, In, It, Ni, Os, Pb, Pd, Pt, Rh, Ru, Sb, Sn, Tl and Zn) from solutions of hydrochloric or nitric acid with and without addition of APDC. Some elements (e.g., Fe, Ga, Ge, In and Au) show identical extractions as their chloro complexes in hydrochloric acid with or without APDC. Others (e.g., Ni, Cu, Pd, As, Ag, Sb, It, Hg and Bi) are strongly extracted (Kd ? 20), from 2 M hydrochloric or nitric acid in the presence of APDC. Palladium (Kd = 8000), Sb (Kd = 10 000), and Bi (Kd = 3500) are particularly easily extracted. The potential of the extraction system was tested by extraction and quantification of palladium from the CANMET standard ore PTC-1; the mean value found was 12.55 μg g?1 (ppm) palladium with a relative standard deviation of 7.6% (n = 12) and a relative error of 1.2% from the recommended value of 12.70 μg g?1.  相似文献   

10.
A new method was developed for the simultaneous speciation of inorganic arsenic and antimony in water by on-line solid-phase extraction coupled with hydride generation-double channel atomic fluorescence spectrometry (HG-DC-AFS). The speciation scheme involved the on-line formation and retention of the ammonium pyrrolidine dithiocarbamate complexes of As(III) and Sb(III) on a single-walled carbon nanotubes packed micro-column, followed by on-line elution and simultaneous detection of As(III) and Sb(III) by HG-DC-AFS; the total As and total Sb were determined by the same protocol after As(V) and Sb(V) were reduced by thiourea, with As(V) and Sb(V) concentrations obtained by subtraction. Various experimental parameters affecting the on-line solid-phase extraction and determination of the analytes species have been investigated in detail. With 180 s preconcentration time, the enrichment factors were found to be 25.4 for As(III) and 24.6 for Sb(III), with the limits of detection (LODs) of 3.8 ng L− 1 for As(III) and 2.1 ng L− 1 for Sb(III). The precisions (RSD) for five replicate measurements of 0.5 μg L−1 of As(III) and 0.2 μg L−1 of Sb(III) were 4.2 and 4.8%, respectively. The developed method was validated by the analysis of standard reference materials (NIST SRM 1640a), and was applied to the speciation of inorganic As and Sb in natural water samples.  相似文献   

11.
A direct and sensitive method for the determination of vanadium concentrations in soil is developed using ultrasonic slurry sampling electrothermal atomic absorption spectrometry (USSSETAAS). The surfactant, KO300G, is used as the stabilizing agent. The precision and accuracy of the method are investigated. The detection limits are 0.6 and 0.7 μg 1−1 for SRM Montana Soil 2711 and SRM Soil — S, respectively. The method is applied to determine the vanadium content in 10 soil samples from the Wielkopolska region.  相似文献   

12.
In this study, a simple and efficient method of ligandless-ultrasound-assisted emulsification microextraction (LL-USAEME) followed by inductively coupled plasma-optical emission spectrometry (ICP-OES) has been developed for simultaneous extraction, preconcentration and determination of manganese, cadmium, cobalt and nickel in water samples. In the proposed approach, tetrachloroethylene was selected as extraction solvent. The effect of important experimental factors such as volume of extraction solvent, pH, sonication time, salt concentration, and temperature was investigated by using a fractional factorial design (25?1) to identify important factors and their interactions. In the next step, a Box-Behnken design (BBD) was applied for optimisation of significant factors. The obtained optimal conditions were: 30?µL for extraction solvent, 12 for pH, 5?min for sonication time, and 5% w/v for salt concentration. The limits of detections (LODs) for Cd(II), Co(II), Mn(II) and Ni(II) were 0.20, 0.13, 0.21 and 0.28?µg?L?1, respectively. Relative standard deviations (RSD, C?=?200.0?µg?L?1, n?=?9) were between 3.4–7.5% and the calibration graphs were linear in the range of 0.25 to 1000.0?µg?L?1 for Mn, 0.5–1000.0?µg?L?1 for Co and Ni and 1.0–250.0?µg?L?1 for Cd. The determination coefficients (R 2) of the calibration curves for the analytes were in the range of 0.993 to 0.999. The proposed method was validated by using two certified reference materials, and also the method was applied successfully for the determination of heavy metals in different real water samples.  相似文献   

13.
A radiochemical procedure for simultaneous determination of lead (203Pb), thallium (202TI) and cadmium (115Cd115mIn) after fast neutron activation, based on ion-exchange separation from bromide medium and additional purification steps for Pb and Tl is described. Radioactive tracers210Pb and109Cd were used for determination of the chemical yields of Pb and Cd; for Tl it was determined gravimetrically. Two standard reference materials, BCR CRM No. 146 Sewage Sludge and NIST SRM 1633a Coal Fly Ash were analyzed and satisfactory agreement with certified values was obtained.  相似文献   

14.
The biological activity of antimony depends on the oxidation state. The Sb(III) and Sb(V) states can be distinguished, even in the ng l?1 range, by coupling extraction with ammonium pyrrlidenedithiocarbamate into methyl isobutyl ketone (APDC/MIBK), or N-benzoyl-N-phenylhydroxylamine (BPHA) into chloroform, with anodic stripping voltammetry (a.s.v.). After complex formation with APDC in acetate-buffered medium, Sb(III), but not Sb(V), is extracted into MIBK and quantified by a.s.v. Antimony(V) is quantified in the aqueous phase after removal of Sb(III) by extraction with BPHA into chloroform from the medium acidified with nitric acid. The applicability of the proposed separation/a.s.v. method is demonstrated for samples of rain, snow and water from a dredging operation. The stability of the two antimony species is examined for natural waters with Sb(III) and Sb(V) added; possibilities of stabilization are described. The precedures should be suitable for speciation of antimony in relatively unpolluted waters.  相似文献   

15.
In this study, a simple, fast and eco-friendly ultrasound-assisted-cloud point extraction method for extraction and pre-concentration of zinc, nickel and cobalt from vegetables and foods prior to their determination by flame atomic absorption spectrometry (FAAS) was proposed. Ultrasound energy was used to shorten extraction time and reduce steps needed or to improve selectivity. The method is based on complex formation of metal ions with carmine in presence of cationic surfactant at pH 5.0, and then extraction of their hydrophobic complexes into the micellar phase of Igepal CO-630 as extractant. After optimisation, calibration curves for Zn, Co and Ni were linear in the range of 2–120, 2–220 and 2–180 μg kg?1, respectively. Limits of detection, which is described as ratio of 3×standard deviation of 12 replicate measurements of blank analysis to slope of calibration curves, were 0.5, 0.6 and 0.6 μg kg?1 for Zn, Ni and Co, respectively. Relative standard deviations (RSDs%, n: 5) for 25 μg kg?1 of each analyte were less than 3.1%. The recovery rate was higher than 94% with a lower RSD than 3.1% for five replicate measurements of 25 μg kg?1 of each analyte. The accuracy was verified using two different standard reference materials (SRM 1570a-Trace elements in spinach leaves and SRM 1548a-Typical diet), and the results were in good agreement with the certified values. The method was applied to the determinations of Zn, Ni and Co in vegetables and foods by FAAS.  相似文献   

16.
A method for simultaneous multi-element analysis of fly ash samples by inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometry (oaTOF-ICP-MS) after closed-vessel microwave extraction with ammonium fluoride was introduced here. Corrosive and/or toxic acids like HF, HCl or HClO4, as well as HNO3, which are commonly used during sample preparation of the fly ash samples, are avoided in this method. The spectral effects due to the formation of different Cl, Na, K, Ca, Mg-containing polyatomic species interfering with the determination of a number of elements like As, Se or Ni during the oaTOF-ICP-MS analysis are negligible. Under the optimum experimental extraction conditions evaluated using a fractional factorial design (10 mg of the sample extracted with 5 mL of 140 g/L NH4F for 10 min at 200°C), analysis of the resulting supernatant with Rh as an internal standard enabled precise and accurate simultaneous determination of 11 elements (Li, Be, Ni, As, Se, Rb, Sb, Cs, W, Tl and U) at trace and ultratrace levels. The accuracy was assessed by analysing two certified reference materials, namely Fine Fly Ash CTA-FFA-1 and Constituent Elements in Coal Fly Ash Standard Reference Material® 1633b. The precision of the reported method was better than 10%.  相似文献   

17.
Direct analysis of the volatile antimony compounds stibine (SbH3), monomethylantimony, dimethylantimony (Me2Sb) and trimethylantimony (Me3Sb) using solid phase microextraction (SPME) with polydimethylsiloxane fibres and gas chromatography–mass spectrometry (GC–MS) is described. The best analyte to background signal ratio was achieved using a 20 min extraction time. Antimony species were separated using a 3% phenylmethylsilicone capillary column operated at a column pressure of 70 kPa, a flow rate of 1.4 ml min?1 and temperature ramping from 30 to 36 °C at 0.1 °C min?1. Cryogenic focusing of desorbed species was required to achieve resolution of antimony species. The optimized SPME–GC–MS method was applied to the analysis of headspace gases from cultures of Cryptococcus humicolus incubated with inorganic antimony(III) and (V) substrates. The headspace gases from biphasic (aerobic–anaerobic) biomass‐concentrated culture incubations revealed the presence of SbH3, Me2Sb and Me3Sb. Stibine was the major antimony species detected in cultures amended with inorganic antimony(V). Me3Sb was the sole volatile antimony species detected when cultures were amended with antimony(III). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
We report on a simple, sensitive and reliable method for the cloud point extraction of antimony (Sb) and its subsequent spectrophotometric detection. It is based on the color reaction of Sb (III) with iodide in acidic medium and subsequent micelle-mediated extraction of tetraiodoantimonate using a non-ionic surfactant in the absence of any chelating agent. The effects of reaction and extraction parameters were optimized. The calibration plot is linear in the range of 0.80–95?ng?mL?1 of antimony in the sample solution, with a regression coefficient (r) of 0.9994 (for n?=?9). The detection limit (at SNR?=?3) is 0.23?ng?mL?1, and the relative standard deviations at 10 and 70?ng?mL?1 of antimony are 3.32 and 1.85?% (at n?=?8), respectively. The method compared favorably to other methods and was applied to determine antimony in seawater, anti-leishmania drug (glucantime), and human serum.
Figure
This method is based on the extraction of yellow iodoantimonous acid (HSbI4) into surfactant-rich phase of Triton X-114 when trivalent antimony in sulfuric acid solution is treated with an excess of potassium iodide solution.  相似文献   

19.
A method is described for the sequential determination of Sb(III) and Sb(V) using Osteryoung square wave cathodic stripping voltammetry. It employs an in-situ plated bismuth-film on an edge-plane graphite substrate as the working electrode. Selective electro-deposition of Sb(III)/Sb(V) is accomplished by applying a potential of ?500 mV vs. Ag/AgCl, followed by reduction to stibine at a more negative potential in the stripping step. Stripping was carried out by applying a square wave waveform between ?500 and ?1400 mV to the antimony deposited. The stripping peak current at ?1150 mV is directly proportional to the concentration of Sb( III)/Sb(V). The calibration plots for Sb (III) were linear up to 12.0?µg L?1 depending on the time of deposition. The calibration plots for Sb (V) were linear up to 7.0?µg L?1, also depending on the time of deposition. The relative standard deviation in the determination of 0.1?µg L?1 of Sb(III) is 4.0% (n?=?5), and the limit of detection is as low as 2 ng L?1. In case of 0.1?µg L?1 Sb(V), the relative standard deviation is 3.0% (n?=?5) and the detection limit also is 2 ng L?1. The method was applied to the analysis of river and sea water samples.  相似文献   

20.
A microwave digestion method in a closed vessel was developed for the determination of trace metals in atmospheric aerosols using inductively coupled plasma mass spectrometry (ICP-MS). A recovery study for the elements V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, and Pb was conducted using multi-elemental standard solutions, NIST 1633b Trace Elements in Coal Fly Ash, and NIST 1648 Urban Particulate Matter. A simple digestion method using only HNO3/H2O2 gave good recoveries (90%-108%) for all elements except Cr in SRM 1648, but yielded low recoveries for SRM 1633b. A more robust method using HNO3/H2O2/HF/H3BO3 yielded higher recoveries (82%-103%) for the lighter elements (V-Zn) in SRM 1633b, and improved the Cr recovery in SRM 1648, but decreased the Se recovery in both SRMs. A comparative analysis of aerosol samples obtained at a remote mountain location Nathiagali, Pakistan (2.5 km above mean sea level), and Mayville, New York, downwind from the highly industrialized Midwestern United States, was carried out using Instrumental Neutron Activation Analysis (INAA) for the elements Cr, Mn, Fe, Co, Zn, As, Se, and Sb. The simple digestion method yielded excellent agreement for Cr, Fe, Zn, As, Se, and Sb, with slopes of the ICP-MS vs. INAA regressions of 0.90-1.00 and R2 values of 0.96-1.00. The regressions for Mn and Co had slopes of 0.82 and 0.84 with R2 values of 0.83 and 0.82, respectively. Addition of HF/H3BO3 did not improve the correlation for any of the elements and degraded the precision somewhat. The technique provides sensitivity and accuracy for trace elements in relatively small aerosol samples used in atmospheric chemistry studies related to SO2 oxidation in cloud droplets. The ability to determine concentrations of a very large number of elements from a single analysis will permit source apportionment of various trace pollutants and hence strategies to control the sources of air pollution. This is particularly important as the health effects of particulate matter are increasingly recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号